RESUMO
Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring.
Assuntos
Metabolismo Energético , Fontes Termais/microbiologia , Microbiota , Proteobactérias/enzimologia , Enxofre/metabolismo , Transcriptoma , Álcalis/análise , Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fontes Termais/química , Metano/metabolismo , Nitrogênio/metabolismo , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Enxofre/análiseRESUMO
Heterotrophic bacterium, Enterobacter cloacae CF-S27 exhibited simultaneous nitrification and aerobic denitrification in presence of high concentration of hydroxylamine. With the initial nitrogen concentration of 100mgL-1h-1, ammonium, nitrate and nitrite removal efficiencies were 81%, 99.9% and 92.8%, while the corresponding maximum removal rates reached as high as 11.6, 15.1 and 11.2mgL-1h-1 respectively. Quantitative amplification by real time PCR and enzyme assay demonstrated that hydroxylamine reductase gene (hao) is actively involved in hetrotrophic nitrification and aerobic denitrification process of Enterobacter cloacae CF-S27. PCR primers were designed targeting amplification of hao gene from diversified environmental soil DNA. The strain Enterobacter cloacae CF-S27 significantly maintained the undetectable amount of dissolved nitrogen throughout 60days of zero water exchange fish culture experiment in domestic wastewater.
Assuntos
Biodegradação Ambiental , Enterobacter cloacae/metabolismo , Hidroxilamina/metabolismo , Nitrogênio/isolamento & purificação , Nitrogênio/farmacocinética , Águas Residuárias/química , Aerobiose , Compostos de Amônio/isolamento & purificação , Compostos de Amônio/metabolismo , Desnitrificação , Processos Heterotróficos , Purificação da Água/métodosRESUMO
Brevibacillus borstelensis cifa_chp40 is a thermophilic, strictly aerobic gram positive motile bacteria isolated from the alkaline hot water spring located in the Eastern Ghats zone of India. It could grow in a wide range of temperature and degrade low-density polythene at 37°C. The strain cifa_chp40 produces essential enzymes like protease, lipase, esterase and amidase at 50°C. Here, we report the draft genome sequence of B. borstelensis cifa_chp40 which will provide further insight into the metabolic capabilities, function and evolution of this important organism.