Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 630(8017): 654-659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839965

RESUMO

Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change1. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies. In this work, we introduce a new class of designer sorbent materials known as 'charged-sorbents'. These materials are prepared through a battery-like charging process that accumulates ions in the pores of low-cost activated carbons, with the inserted ions then serving as sites for carbon dioxide adsorption. We use our charging process to accumulate reactive hydroxide ions in the pores of a carbon electrode, and find that the resulting sorbent material can rapidly capture carbon dioxide from ambient air by means of (bi)carbonate formation. Unlike traditional bulk carbonates, charged-sorbent regeneration can be achieved at low temperatures (90-100 °C) and the sorbent's conductive nature permits direct Joule heating regeneration2,3 using renewable electricity. Given their highly tailorable pore environments and low cost, we anticipate that charged-sorbents will find numerous potential applications in chemical separations, catalysis and beyond.


Assuntos
Dióxido de Carbono , Dióxido de Carbono/análise , Dióxido de Carbono/química , Dióxido de Carbono/isolamento & purificação , Adsorção , Eletrodos , Hidróxidos/química , Atmosfera/química , Carbonatos/química , Ar , Temperatura , Carvão Vegetal/química , Porosidade , Carbono/química
2.
J Am Chem Soc ; 146(33): 23171-23181, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133641

RESUMO

Conductive layered metal-organic frameworks (MOFs) have demonstrated promising electrochemical performances as supercapacitor electrode materials. The well-defined chemical structures of these crystalline porous electrodes facilitate structure-performance studies; however, there is a fundamental lack in the molecular-level understanding of charge storage mechanisms in conductive layered MOFs. To address this, we employ solid-state nuclear magnetic resonance (NMR) spectroscopy to study ion adsorption in nickel 2,3,6,7,10,11-hexaiminotriphenylene, Ni3(HITP)2. In this system, we find that separate resonances can be observed for the MOF's in-pore and ex-pore ions. The chemical shift of in-pore electrolyte is found to be dominated by specific chemical interactions with the MOF functional groups, with this result supported by quantum mechanics/molecular mechanics (QM/MM) and density functional theory (DFT) calculations. Quantification of the electrolyte environments by NMR was also found to provide a proxy for electrochemical performance, which could facilitate the rapid screening of synthesized MOF samples. Finally, the charge storage mechanism was explored using a combination of ex-situ NMR and operando electrochemical quartz crystal microbalance (EQCM) experiments. These measurements revealed that cations are the dominant contributors to charge storage in Ni3(HITP)2, with anions contributing only a minor contribution to the charge storage. Overall, this work establishes the methods for studying MOF-electrolyte interactions via NMR spectroscopy. Understanding how these interactions influence the charging storage mechanism will aid the design of MOF-electrolyte combinations to optimize the performance of supercapacitors, as well as other electrochemical devices including electrocatalysts and sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA