Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nano Lett ; 22(11): 4362-4367, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35587204

RESUMO

Herein we describe a novel spinning pump-probe photoacoustic technique developed to study nonlinear absorption in thin films. As a test case, an organic polycrystalline thin film of quinacridone, a well-known pigment, with a thickness in the tens of nanometers range, is excited by a femtosecond laser pulse which generates a time-domain Brillouin scattering signal. This signal is directly related to the strain wave launched from the film into the substrate and can be used to quantitatively extract the nonlinear optical absorption properties of the film itself. Quinacridone exhibits both quadratic and cubic laser fluence dependence regimes which we show to correspond to two- and three-photon absorption processes. This technique can be broadly applied to materials that are difficult or impossible to characterize with conventional transmittance-based measurements including materials at the nanoscale, prone to laser damage, with very weak nonlinear properties, opaque, or highly scattering.

2.
J Am Chem Soc ; 144(1): 195-211, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939802

RESUMO

Pinned and mobile ferroelastic domain walls are detected in response to mechanical stress in a Mn3+ complex with two-step thermal switching between the spin triplet and spin quintet forms. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy on [MnIII(3,5-diCl-sal2(323))]BPh4 reveal three distinct symmetry-breaking phase transitions in the polar space group series Cc → Pc → P1 → P1(1/2). The transition mechanisms involve coupling between structural and spin state order parameters, and the three transitions are Landau tricritical, first order, and first order, respectively. The two first-order phase transitions also show changes in magnetic properties and spin state ordering in the Jahn-Teller-active Mn3+ complex. On the basis of the change in symmetry from that of the parent structure, Cc, the triclinic phases are also ferroelastic, which has been confirmed by resonant ultrasound spectroscopy. Measurements of magnetoelectric coupling revealed significant changes in electric polarization at both the Pc → P1 and P1 → P1(1/2) transitions, with opposite signs. All these phases are polar, while P1 is also chiral. Remanent electric polarization was detected when applying a pulsed magnetic field of 60 T in the P1→ P1(1/2) region of bistability at 90 K. Thus, we showcase here a rare example of multifunctionality in a spin crossover material where the strain and polarization tensors and structural and spin state order parameters are strongly coupled.

3.
Angew Chem Int Ed Engl ; 61(4): e202114021, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34761504

RESUMO

A MnIII spin crossover complex with atypical two-step hysteretic thermal switching at 74 K and 84 K shows rich structural-magnetic interplay and magnetic-field-induced spin state switching below 14 T with an onset below 5 T. The spin states, structures, and the nature of the phase transitions are elucidated via X-ray and magnetization measurements. An unusual intermediate phase containing four individual sites, where 1 / 4 are in a pure low spin state, is observed. The splitting of equivalent sites in the high temperature phase into four inequivalent sites is due to a structural reorganization involving a primary and a secondary symmetry-breaking order parameter that induces a crystal system change from orthorhombic→monoclinic and a cell doubling. Further cooling leads to a reconstructive phase transition and a monoclinic low-temperature phase with two inequivalent low-spin sites. The coupling between the order parameters is identified in the framework of Landau theory.

4.
Inorg Chem ; 60(9): 6167-6175, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331784

RESUMO

We investigate giant magnetoelectric coupling at a Mn3+ spin crossover in [MnIIIL]BPh4 (L = (3,5-diBr-sal)2323) with a field-induced permanent switching of the structural, electric, and magnetic properties. An applied magnetic field induces a first-order phase transition from a high spin/low spin (HS-LS) ordered phase to a HS-only phase at 87.5 K that remains after the field is removed. We observe this unusual effect for DC magnetic fields as low as 8.7 T. The spin-state switching driven by the magnetic field in the bistable molecular material is accompanied by a change in electric polarization amplitude and direction due to a symmetry-breaking phase transition between polar space groups. The magnetoelectric coupling occurs due to a γη2 coupling between the order parameter γ related to the spin-state bistability and the symmetry-breaking order parameter η responsible for the change of symmetry between polar structural phases. We also observe conductivity occurring during the spin crossover and evaluate the possibility that it results from conducting phase boundaries. We perform ab initio calculations to understand the origin of the electric polarization change as well as the conductivity during the spin crossover. Thus, we demonstrate a giant magnetoelectric effect with a field-induced electric polarization change that is 1/10 of the record for any material.

5.
J Am Chem Soc ; 142(2): 931-936, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31880442

RESUMO

A one-dimensional coordination solid 1c is synthesized by reaction of a bispyridyl dithienylethene (DTE) photochromic unit with the highly anisotropic dysprosium-based single-molecule magnet [Dy(Tppy)F(pyridine)2]PF6. Slow magnetic relaxation characteristics are retained in the chain compound 1c, and photoisomerization of the bridging DTE ligand induces a single-crystal-to-single-crystal transformation that can be monitored using photocrystallography. Notably, the resulting chain compound 1o exhibits faster low-temperature relaxation than that of 1c, which is apparent in magnetic hysteresis data collected for both compounds as high as 4 K. Ab initio calculations suggest that this photomodulation of the magnetic relaxation behavior is due to crystal packing changes rather than changes to the crystal field splitting upon ligand isomerization.

6.
Angew Chem Int Ed Engl ; 59(32): 13305-13312, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32358911

RESUMO

Domain wall motion is detected for the first time during the transition to a ferroelastic and spin state ordered phase of a spin crossover complex. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy (RUS) revealed two distinct symmetry-breaking phase transitions in the mononuclear Mn3+ compound [Mn(3,5-diBr-sal2 (323))]BPh4 , 1. The first at 250 K, involves the space group change Cc→Pc and is thermodynamically continuous, while the second, Pc→P1 at 85 K, is discontinuous and related to spin crossover and spin state ordering. Stress-induced domain wall mobility was interpreted on the basis of a steep increase in acoustic loss immediately below the the Pc-P1 transition.

7.
Angew Chem Int Ed Engl ; 58(34): 11811-11815, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31233272

RESUMO

Molecular magnetic switches are expected to form the functional components of future nanodevices. Herein we combine detailed (photo-) crystallography and magnetic studies to reveal the unusual switching properties of an iron(III) complex, between low (LS) and high (HS) spin states. On cooling, it exhibits a partial thermal conversion associated with a reconstructive phase transition from a [HS-HS] to a [LS-HS] phase with a hysteresis of 25 K. Photoexcitation at low temperature allows access to a [LS-LS] phase, never observed at thermal equilibrium. As well as reporting the first iron(III) spin crossover complex to exhibit reverse-LIESST (light-induced excited spin state trapping), we also reveal a hidden hysteresis of 30 K between the hidden [LS-LS] and [HS-LS] phases. Moreover, we demonstrate that FeIII spin-crossover (SCO) complexes can be just as effective as FeII systems, and with the advantage of being air-stable, they are ideally suited for use in molecular electronics.

8.
Chemistry ; 24(55): 14760-14767, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985534

RESUMO

Spin-transition compounds are coordination complexes that can present two stable or metastable high-spin and low-spin states at a given temperature (thermal hysteresis). The width of the thermal hysteresis (difference between the maximum and minimum temperature between which the compound exhibits bi-stability) depends on the interactions between the coordination complexes within the compound, and which may be modulated by the absence or presence of solvent within the structure. The new compound [Fe(3-bpp)2 ][Au(CN)2 ]2 (1, 3-bpp=2,6-di-(1H-pyrazol-3-yl)pyridine) was synthesized and its properties were compared with those of the solvated compound [Fe(3-bpp)2 ][Au(CN)2 ]2 ⋅2 H2 O (1.H2 O) already described. 1 has a two-steps thermal hysteresis of 45 K, in contrast to the compound 1.H2 O which exhibits a gradual conversion without hysteresis. This hysteretic transition is accompanied by a reversible reconstructive structural transition and twinning. This stepped behaviour is also observed in the photomagnetic properties despite the low efficiency of photoswitching. Single-crystal photocrystallographic investigations confirm this low conversion, which we attributed to the high energy cost to form the high-spin structure, whose symmetry differs from that of the low-spin phase.

9.
Inorg Chem ; 57(16): 9880-9891, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30080034

RESUMO

A series of bulky substituted bipyridine-related iron(II) complexes [Fe(H2Bpz2)2(L)] (pz = pyrazolyl) were prepared, where L = 5,5'-dimethyl-2,2'-bipyridine (bipy-CH3, 1), L = dimethyl-2,2'-bipyridyl-5,5'-dicarboxylate (MeObpydc, 2), L = diethyl-2,2'-bipyridyl-5,5'-dicarboxylate (EtObpydc, 3), or L = diisopropyl-2,2'-bipyridine-5,5'-dicarboxylate ( i-PrObpydc, 4). The crystal structures of five new iron(II) complexes were determined by X-ray diffraction: those of 1, 3, and 4 and two modifications of 3 (3B) and 4 (4B). Complexes 1 and 3B display incomplete spin crossover (SCO) behavior because of a freezing-in effect, whereas 3 and 4B undergo gradual and incomplete SCO behaviors. Complexes 2 and 4 show a completely gradual and steep SCO, respectively. Such different SCO behaviors can be attributed to an electronic substituent effect in the bipyridyl ligand conformation and a crystal packing effect. Importantly, the electronic substituent effect of the isopropyl acetate group and C-H···O supramolecular interactions in 4 contribute to a highly cooperative behavior, which leads to an abrupt thermally induced spin transition.

10.
Chemistry ; 22(13): 4634-6, 2016 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-26928979

RESUMO

A summary of the evidence based on spectroscopy, calculated density of states (DOS) and photo-electrochemistry, for electron transfer from the occupied Fe(2+) (d)-ß orbital located within the band gap of the [Ti4 O(OEt)15 (FeBr)] cluster, to its unoccupied Ti(d) orbitals is presented. The importance of the distinction between the concepts of band gap and HOMO-LUMO gap is emphasized.

11.
Angew Chem Int Ed Engl ; 55(30): 8675-9, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27193972

RESUMO

The unprecedented bimetallic 2D coordination polymer {Fe[(Hg(SCN)3 )2 ](4,4'-bipy)2 }n exhibits a thermal high-spin (HS)↔low-spin (LS) staircase-like conversion characterized by a multi-step dependence of the HS molar fraction γHS . Between the fully HS (γHS =1) and LS (γHS =0) phases, two steps associated with different ordering appear in terms of spin-state concentration waves (SSCW). On the γHS ≈0.5 step, a periodic SSCW forms with a HS-LS-HS-LS sequence. On the γHS ≈0.34 step, the 4D superspace crystallography structural refinement reveals an aperiodic SSCW, with a HS-LS sequence incommensurate with the molecular lattice. The formation of these different long-range spatially ordered structures of LS and HS states during the multi-step spin-crossover is discussed within the framework of "Devil's staircase"-type transitions. Spatially modulated phases are known in various types of materials but are uniquely related to molecular HS/LS bistability in this case.

12.
Chemistry ; 21(32): 11538-44, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26147327

RESUMO

Homodisperse doped polyoxotitanate nanoclusters with formulae Ti11 (MX)O14 (OiPr)17 (M=Mn, Fe or Co; X=Cl, Br or I, OiPr=isopropoxide) display strongly dopant-dependent properties. Spectroscopic solution and reflectance measurements backed up by density of states and time-dependent DFT calculations based on the determined structures, show the prominent effect of FeX substitution by decreasing the HOMO-LUMO gap of the particles. The effect is attributed to the presence of an occupied Fe ß orbital halfway up the bandgap, leading to long-wavelength absorption with electron transfer to the titanium atoms of the cluster. Whereas the light absorption varies significantly with variation of the transition metal dopant, its dependency on the nature of the halogen atom or the change in dipole moment across the series is minor.

13.
Inorg Chem ; 53(19): 10594-601, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25238405

RESUMO

The triplet excited state of a new crystalline form of a tetranuclear coordination d(10)-d(10)-type complex, Ag2Cu2L4 (L = 2-diphenylphosphino-3-methylindole ligand), containing Ag(I) and Cu(I) metal centers has been explored using the Laue pump-probe technique with ≈80 ps time resolution. The relatively short lifetime of 1 µs is accompanied by significant photoinduced structural changes, as large as the Ag1···Cu2 distance shortening by 0.59(3) Å. The results show a pronounced strengthening of the argentophilic interactions and formation of new Ag···Cu bonds on excitation. Theoretical calculations indicate that the structural changes are due to a ligand-to-metal charge transfer (LMCT) strengthening the Ag···Ag interaction, mainly occurring from the methylindole ligands to the silver metal centers. QM/MM optimizations of the ground and excited states of the complex support the experimental results. Comparison with isolated molecule optimizations demonstrates the restricting effect of the crystalline matrix on photoinduced distortions. The work represents the first time-resolved Laue diffraction study of a heteronuclear coordination complex and provides new information on the nature of photoresponse of coinage metal complexes, which have been the subject of extensive studies.


Assuntos
Cobre/química , Luz , Substâncias Luminescentes/química , Compostos Organometálicos/química , Prata/química , Processos Fotoquímicos , Teoria Quântica , Fatores de Tempo
14.
Phys Chem Chem Phys ; 16(30): 15792-5, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24964263

RESUMO

Whereas a large number of sensitized polyoxotitanate clusters have been reported, information on the electrochemical properties of the fully structurally defined nanoparticles is not available. Bridging of this gap will allow a systematic analysis of the relation between sensitizer-cluster binding geometry, electronic structure and electron injection properties. Ti17O28(O(i)Pr)16(Fe(II)Phen)2 is a member of a doubly-doped series of nanoclusters in which the phenanthroline is attached to the surface-located transition metal atom. The visible spectrum of a dichloromethane solution of the studied sample shows a series of absorption bands in the 400-900 nm region. Theoretical DOS and TDDFT calculations indicate that the bands in increasing wavelength order correspond essentially to metal-to-core charge transfer (MCCT) at ∼460 nm, metal-to-ligand charge transfer (MLCT) at ∼520 nm and d-d metal-atom transitions. Exposure of a thin layer of the sample to light in a photoelectrochemical cell produces an electric current in the 400 to ∼640 nm region. The fit of the wavelength range of the electron injection with the results of the calculations suggests that charge injection into the FTO anode occurs both from the TiO cluster and from the phenanthroline ligand. Injection from the phenanthroline via the cluster orbitals is ruled out by the lower energy of the phenanthroline orbitals.

15.
Dalton Trans ; 53(24): 10159-10167, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38819197

RESUMO

Giant magnetoelectric coupling and magnetic-field-induced spin state trapping (MIESST) were recently reported in spin crossover materials with polar phases. We discuss these phenomena considering the distinct contributions of the change of the molecular spin state, driven by the magnetic field, and the coupled structural symmetry-breaking during the stepwise change of electric polarisation or MIESST.

16.
Nat Commun ; 15(1): 267, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267429

RESUMO

Ultrafast photoinduced phase transitions at room temperature, driven by a single laser shot and persisting long after stimuli, represent emerging routes for ultrafast control over materials' properties. Time-resolved studies provide fundamental mechanistic insight into far-from-equilibrium electronic and structural dynamics. Here we study the photoinduced phase transformation of the Rb0.94Mn0.94Co0.06[Fe(CN)6]0.98 material, designed to exhibit a 75 K wide thermal hysteresis around room temperature between MnIIIFeII tetragonal and MnIIFeIII cubic phases. We developed a specific powder sample streaming technique to monitor by ultrafast X-ray diffraction the structural and symmetry changes. We show that the photoinduced polarons expand the lattice, while the tetragonal-to-cubic photoinduced phase transition occurs within 100 ps above threshold fluence. These results are rationalized within the framework of the Landau theory of phase transition as an elastically-driven and cooperative process. We foresee broad applications of the streaming powder technique to study non-reversible and ultrafast dynamics.

17.
Chemistry ; 19(49): 16651-5, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24166801

RESUMO

The structures of three newly synthesized phosphonate-substituted polyoxotitanates are reported. The Ti/O core of [Ti4O(OEt)12(PhenylPO3)] (1) is the building block for two larger phosphonate-substituted nanoclusters, [Ti25O26(OEt)36(PhenylPO3)6] (2) and [Ti26O26(OEt)39(PhenylPO3)6]Br (3). All compounds exhibit a not previously recognized triply bridging binding mode of the phosphonate anchor with short connecting Ti-O bonds, the average of which is 2.010(7) Å. Comparison with previously reported work suggests that the binding mode of the phosphonate anchor is strongly dependent on the structure of the underlying substrate.

18.
Inorg Chem ; 52(9): 4750-2, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23587091

RESUMO

The synthesis and crystallographic characterization of alkali-metal-doped ethoxotitanate clusters with 28 and 29 Ti atoms as well as a new dopant-free Ti28 cluster are presented. The light-metal-doped polyoxotitanate clusters in which the alkali-metal atom is the critical structure-determining component are the largest synthesized so far. Calculations show that doping with light alkali atoms narrows the band gap compared with the nondoped crystals but does not introduce additional energy levels within the band gap.

19.
Chem Sci ; 14(26): 7185-7191, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37416698

RESUMO

The impact of solvent on spin crossover (SCO) behaviour is reported in two solvates [Fe(qsal-I)2]NO3·2ROH (qsal-I = 4-iodo-2-[(8-quinolylimino)methyl]phenolate; R = Me 1 or Et 2) which undergo abrupt and gradual SCO, respectively. A symmetry-breaking phase transition due to spin-state ordering from a [HS] to [HS-LS] state occurs at 210 K in 1, while T1/2 = 250 K for the EtOH solvate, where complete SCO occurs. The MeOH solvate exhibits LIESST and reverse-LIESST from the [HS-LS] state, revealing a hidden [LS] state. Moreover, photocrystallographic studies on 1 at 10 K reveal re-entrant photoinduced phase transitions to a high symmetry [HS] phase when irradiated at 980 nm or a high symmetry [LS] phase after irradiation at 660 nm. This study represents the first example of bidirectional photoswitchability and subsequent symmetry-breaking from a [HS-LS] state in an iron(iii) SCO material.

20.
Chem Commun (Camb) ; 59(35): 5265-5268, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37057428

RESUMO

A dinuclear metallacycle assembled from a bispyridyl dithienylethene linker and a highly anisotropic dysprosium based Single Molecule Magnet (SMM) shows magnetic hysteresis at 1.8 K together with photoisomerization in single crystals (SC). The impact of photoswitching on the SMM behavior is evidenced and related to the specific organization of the magnetic units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA