Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Molecules ; 28(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764217

RESUMO

Current influenza vaccines are mainly strain-specific and have limited efficacy in preventing new influenza A strains. Efficient control of infection can potentially be achieved through the development of broad-spectrum vaccines based on conserved antigens. A combination of several such antigens, including the conserved region of the second subunit of the hemagglutinin (HA2), the extracellular domain of the M2 protein (M2e), and epitopes of nucleoprotein (NP), which together can elicit an antibody- and cell-mediated immune response, would be preferred for vaccine development. In this study, we obtained recombinant virus-like particles formed by an artificial self-assembling peptide (SAP) carrying two epitopes from NP, tandem copies of M2e and HA2 peptides, along with a T helper Pan DR-binding epitope (PADRE). Fusion proteins expressed in Escherichia coli self-assembled in vitro into spherical particles with a size of 15-35 nm. Immunization of mice with these particles induced strong humoral immune response against M2e and the entire virus, and lead to the formation of cytokine-secreting antigen-specific CD4+ and CD8+ effector memory T cells. Immunization provided high protection of mice against the lethal challenge with the influenza A virus. Our results show that SAP-based nanoparticles carrying conserved peptides from M2, HA, and NP proteins of the influenza A virus, as well as T helper epitope PADRE, can be used for the development of universal flu vaccines.


Assuntos
Influenza Humana , Nucleoproteínas , Animais , Camundongos , Humanos , Nucleoproteínas/genética , Hemaglutininas , Linfócitos T , Epitopos , Escherichia coli/genética , Imunidade
2.
Nanomedicine ; 39: 102463, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583058

RESUMO

The extracellular domain of the M2 protein (M2e) and conserved region of the second subunit of the hemagglutinin (HA2) could be used for the development of broad-spectrum vaccines against influenza A. Here we obtained and characterized recombinant mosaic proteins containing tandem copies of M2e and HA2 fused to an artificial self-assembling peptide (SAP). The inclusion of SAP peptides in the fusion proteins enabled their self-assembly in vitro into spherical particles with a size of 30-50 nm. Intranasal immunization of mice with these particles without additional adjuvants induced strong humoral immune response against M2e and the whole virus. Particles carrying both M2e and HA2 induced antigen-specific multifunctional CD4+ effector memory T cells. Immunization provided high protection of mice against the lethal challenge with different subtypes of influenza A virus. The obtained self-assembling nanoparticles can be used to develop a universal influenza vaccine.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Nanopartículas , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Epitopos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Peptídeos , Vacinas Sintéticas , Proteínas da Matriz Viral/genética
3.
Biotechnol Lett ; 42(11): 2441-2446, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32875477

RESUMO

OBJECTIVE: Hepatitis E virus (HEV) infection is a major cause of acute hepatitis worldwide. The aim of the study is the development of plant expression system for the production of virus-like particles formed by HEV capsid and the characterization of their immunogenicity. RESULTS: Open reading frame (ORF) 2 encodes the viral capsid protein and possesses candidate for vaccine production. In this study, we used truncated genotype 3 HEV ORF 2 consisting of aa residues 110 to 610. The recombinant protein was expressed in Nicotiana benthamiana plants using the self-replicating potato virus X-based vector pEff up to 10% of the soluble protein fraction. The yield of HEV 110-610 after purification was 150-200 µg per 1 g of green leaf biomass. The recombinant protein formed nanosized virus-like particles. The immunization of mice with plant-produced HEV 110-610 protein induced high levels of HEV-specific serum antibodies. CONCLUSIONS: HEV ORF 2 (110-610 aa) can be used as candidate for the development of a plant-produced vaccine against Hepatitis E.


Assuntos
Vírus da Hepatite E/imunologia , Hepatite E/prevenção & controle , Vacinas contra Influenza/administração & dosagem , Mutação , Nicotiana/crescimento & desenvolvimento , Proteínas Virais/genética , Animais , Feminino , Anticorpos Anti-Hepatite/sangue , Hepatite E/imunologia , Vírus da Hepatite E/metabolismo , Imunização , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/metabolismo , Injeções Intramusculares , Camundongos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Proteínas Virais/imunologia
4.
J Biomed Sci ; 25(1): 33, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29631629

RESUMO

BACKGROUND: Current influenza vaccines are mainly strain-specific and have limited efficacy in preventing new, potentially pandemic, influenza strains. Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum vaccines based on conserved antigens. A current trend in the design of universal flu vaccines is the construction of recombinant proteins based on combinations of various conserved epitopes of viral proteins (M1, M2, HA2, NP). In this study, we compared the immunogenicity and protective action of two recombinant proteins which feature different designs and which target different antigens. RESULTS: Balb/c mice were immunized subcutaneously with Flg-HA2-2-4M2ehs or FlgSh-HA2-2-4M2ehs; these constructs differ in the location of hemagglutinin's HA2-2(76-130) insertion into flagellin (FliC). The humoral and T-cell immune responses to these constructs were evaluated. The simultaneous expression of different M2e and HA2-2(76-130) in recombinant protein form induces a strong M2e-specific IgG response and CD4+/ CD8+ T-cell response. The insertion of HA2-2(76-130) into the hypervariable domain of flagellin greatly increases antigen-specific T-cell response, as evidenced by the formation of multi-cytokine-secreting CD4+, CD8+ T-cells, Tem, and Tcm. Both proteins provide full protection from lethal challenge with A/H3N2 and A/H7N9. CONCLUSION: Our results show that highly conserved M2e and HA2-2(76-130) can be used as important targets for the development of universal flu vaccines. The location of the HA2-2(76-130) peptide's insertion into the hypervariable domain of flagellin had a significant effect on the T-cell response to influenza antigens, as seen by forming of multi-cytokine-secreting CD4+ and CD8+ T-cells.


Assuntos
Epitopos/imunologia , Flagelina/imunologia , Imunogenicidade da Vacina/imunologia , Vírus da Influenza A/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Epitopos/genética , Feminino , Flagelina/genética , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
5.
BMC Biotechnol ; 15: 42, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26022390

RESUMO

BACKGROUND: The extracellular domain of matrix protein 2 (M2e) of influenza A virus is a promising target for the development of a universal vaccine against influenza because M2e sequences are highly conserved among human influenza A strains. However, native M2e is poorly immunogenic, but its immunogenicity can be increased by delivery in combination with adjuvants or carrier particles. It was previously shown that fusion of M2e to bacterial flagellin, the ligand for Toll-like receptor (TLR) 5 and powerful mucosal adjuvant, significantly increases the immunogenicity and protective capacity of M2e. RESULTS: In this study, we report for the first time the transient expression in plants of a recombinant protein Flg-4M comprising flagellin of Salmonella typhimurium fused to four tandem copies of the M2e peptide. The chimeric construct was expressed in Nicotiana benthamiana plants using either the self-replicating potato virus X (PVX) based vector, pA7248AMV-GFP, or the cowpea mosaic virus (CPMV)-derived expression vector, pEAQ-HT. The highest expression level up to 30% of total soluble protein (about 1 mg/g of fresh leaf tissue) was achieved with the PVX-based expression system. Intranasal immunization of mice with purified Flg-4M protein induced high levels of M2e-specific serum antibodies and provided protection against lethal challenge with influenza virus. CONCLUSIONS: This study confirms the usefulness of flagellin as a carrier of M2e and its relevance for the production of M2e-based candidate influenza vaccines in plants.


Assuntos
Flagelina/imunologia , Vacinas contra Influenza/biossíntese , Nicotiana/virologia , Vírus de Plantas/fisiologia , Salmonella typhimurium/genética , Proteínas da Matriz Viral/imunologia , Administração Intranasal , Animais , Comovirus/genética , Comovirus/fisiologia , Proteínas Filagrinas , Flagelina/genética , Vetores Genéticos/fisiologia , Humanos , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Vírus de Plantas/genética , Potexvirus/genética , Potexvirus/fisiologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Nicotiana/genética , Nicotiana/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética
6.
Biology (Basel) ; 13(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39452110

RESUMO

Conserved influenza virus proteins, such as the hemagglutinin stem domain (HA2), nucleoprotein (NP), and matrix protein (M), are the main targets in the development of universal influenza vaccines. Previously, we constructed a recombinant vaccine protein Flg-HA2-2-4M2ehs containing the extracellular domain of the M2 protein (M2e) and the aa76-130 sequence of the second HA subunit as target antigens. It demonstrated immunogenicity and broad protection against influenza A viruses after intranasal and parenteral administration. This study shows that CD8+ epitopes of NP, inserted into a flagellin-fused protein carrying M2e and HA2, affect the post-vaccination immune humoral response to virus antigens without reducing protection. No differences were found between the two proteins in their ability to stimulate the formation of follicular Th in the spleen, which may contribute to a long-lasting antigen-specific humoral response. The data obtained on Balb/c mice suggest that the insertion of CTL NP epitopes into the flagellin-fused protein carrying M2e and HA2 reduces the antibody response to M2e and A/H3N2. In C57Bl6 mice, this stimulates the formation of NP-specific CD8+ Tem and virus-specific mono- and multifunctional CD4+ and CD8+ Tem in the spleen and completely protects mice from influenza virus subtypes A/H1N1pdm09 and A/H3N2.

7.
Vaccines (Basel) ; 12(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39340063

RESUMO

Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum recombinant vaccines based on conserved antigens. The extracellular domain of the transmembrane protein M2 of influenza A virus (M2e) is highly conserved but poorly immunogenic and needs to be fused to an adjuvant protein or carrier virus-like particles (VLPs) to increase immunogenicity and provide protection against infection. In this study, we obtained VLPs based on capsid proteins (CPs) of single-stranded RNA phages Beihai32 and PQ465 bearing the M2e peptides. Four copies of the M2e peptide were linked to the C-terminus of the CP of phage Beihai32 and to the N and C termini of the CP of phage PQ465. The hybrid proteins, being expressed in Escherichia coli, formed spherical VLPs of about 30 nm in size. Immunogold transmission electron microscopy showed that VLPs formed by the phage PQ465 CP with a C-terminal M2e fusion present the M2e peptide on the surface. Subcutaneous immunization of mice with VLPs formed by both CPs containing four copies of the M2e peptide at the C termini induced high levels of M2e-specific IgG antibodies in serum and provided mice with protection against lethal influenza A virus challenge. In the case of an N-terminal fusion of M2e with the phage PQ465 CP, the immune response against M2e was significantly lower. CPs of phages Beihai32 and PQ465, containing four copies of the M2e peptide at their C termini, can be used to develop recombinant influenza A vaccine.

8.
Plants (Basel) ; 12(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299207

RESUMO

Despite advances in vaccine development, influenza remains a persistent global health threat and the search for a broad-spectrum recombinant vaccine against influenza continues. The extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is highly conserved and can be used to develop a universal vaccine. M2e is a poor immunogen by itself, but it becomes highly immunogenic when linked to an appropriate carrier. Here, we report the transient expression of a recombinant protein comprising four tandem copies of M2e fused to an artificial self-assembling peptide (SAP) in plants. The hybrid protein was efficiently expressed in Nicotiana benthamiana using the self-replicating potato virus X-based vector pEff. The protein was purified using metal affinity chromatography under denaturing conditions. The hybrid protein was capable of self-assembly in vitro into spherical particles 15-30 nm in size. The subcutaneous immunization of mice with M2e-carrying nanoparticles induced high levels of M2e-specific IgG antibodies in serum and mucosal secretions. Immunization provided mice with protection against a lethal influenza A virus challenge. SAP-based nanoparticles displaying M2e peptides can be further used to develop a recombinant "universal" vaccine against influenza A produced in plants.

9.
J Mater Chem B ; 11(17): 3860-3870, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013677

RESUMO

Transcutaneous immunization receives much attention due to the recognition of a complex network of immunoregulatory cells in various layers of the skin. The elaboration of non-invasive needle-free approaches towards antigen delivery holds especially great potential here while searching for a hygienically optimal vaccination strategy. Here, we report on a novel protocol for transfollicular immunization aiming at delivery of an inactivated influenza vaccine to perifollicular antigen presenting cells without disrupting the stratum corneum integrity. Porous calcium carbonate (vaterite) submicron carriers and sonophoresis were utilized for this purpose. Transportation of the vaccine-loaded particles into hair follicles of mice was assessed in vivo via optical coherence tomography monitoring. The effectiveness of the designed immunization protocol was further demonstrated in an animal model by means of micro-neutralization and enzyme-linked immunosorbent assays. The titers of secreted virus-specific IgGs were compared to those obtained in response to intramuscular immunization using conventional influenza vaccine formulation demonstrating no statistically significant differences in antibody levels between the groups. The findings of our pilot study render the intra-follicular delivery of the inactivated influenza vaccine by means of vaterite carriers a promising alternative to invasive immunization.


Assuntos
Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Projetos Piloto , Administração Cutânea , Vacinação , Imunização/métodos
10.
Viruses ; 14(6)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746794

RESUMO

In this review, we analyze the epidemiological and ecological features of influenza B, one of the most common and severe respiratory infections. The review presents various strategies for cross-protective influenza B vaccine development, including recombinant viruses, virus-like particles, and recombinant proteins. We provide an overview of viral proteins as cross-protective vaccine targets, along with other updated broadly protective vaccine strategies. The importance of developing such vaccines lies not only in influenza B prevention, but also in the very attractive prospect of eradicating the influenza B virus in the human population.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Anticorpos Antivirais , Proteção Cruzada , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle
11.
Vaccines (Basel) ; 10(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36560509

RESUMO

Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum vaccines. Recombinant proteins incorporating conserved influenza A virus peptides are one of the platforms for the development of cross-protective influenza vaccines. We constructed a recombinant protein Flg-HA2-2-4M2ehs, in which the extracellular domain of the M2 protein (M2e) and the sequence (aa76-130) of the second subunit of HA (HA2) were used as target antigens. In this study, we investigated the ability of the Flg-HA2-2-4M2ehs protein to activate innate immunity and stimulate the formation of T-cell response in mice of different genetic lines after intranasal immunization. Our studies showed that the Flg-HA2-2-4M2ehs protein was manifested in an increase in the relative content of neutrophils, monocytes, and interstitial macrophages, against the backdrop of a decrease in the level of dendritic cells and increased expression in the CD86 marker. In the lungs of BALB/c mice, immunization with the Flg-HA2-2-4M2ehs protein induced the formation of antigen-specific CD4+ and CD8+ effector memory T cells, producing TNF-α. In mice C57Bl/6, the formation of antigen-specific effector CD8+ T cells, predominantly producing IFN-γ+, was demonstrated. The data obtained showed the formation of CD8+ and CD4+ effector memory T cells expressing the CD107a.

12.
Viruses ; 12(10)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036278

RESUMO

The highly conserved extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is a promising target for the development of broad-spectrum vaccines. However, M2e is a poor immunogen by itself and must be linked to an appropriate carrier to induce an efficient immune response. In this study, we obtained recombinant mosaic proteins containing tandem copies of M2e fused to a lipopeptide from Neisseria meningitidis surface lipoprotein Ag473 and alpha-helical linkers and analyzed their immunogenicity. Six fusion proteins, comprising four or eight tandem copies of M2e flanked by alpha-helical linkers, lipopeptides, or a combination of both of these elements, were produced in Escherichia coli. The proteins, containing both alpha-helical linkers and lipopeptides at each side of M2e repeats, formed nanosized particles, but no particulate structures were observed in the absence of lipopeptides. Animal study results showed that proteins with lipopeptides induced strong M2e-specific antibody responses in the absence of external adjuvants compared to similar proteins without lipopeptides. Thus, the recombinant M2e-based proteins containing alpha-helical linkers and N. meningitidis lipopeptide sequences at the N- and C-termini of four or eight tandem copies of M2e peptide are promising vaccine candidates.


Assuntos
Proteínas de Bactérias/imunologia , Vírus da Influenza A/imunologia , Proteínas de Fusão de Membrana/imunologia , Proteínas Recombinantes de Fusão/imunologia , Vacinas Sintéticas/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Lipopeptídeos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Neisseria meningitidis/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Domínios Proteicos/imunologia
13.
Plants (Basel) ; 9(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013187

RESUMO

The development of recombinant influenza vaccines with broad spectrum protection is an important task. The combination of conservative viral antigens, such as M2e, the extracellular domain of the transmembrane protein M2, and conserved regions of the second subunit of hemagglutinin (HA), provides an opportunity for the development of universal influenza vaccines. Immunogenicity of the antigens could be enhanced by fusion to bacterial flagellin, the ligand for Toll-like receptor 5, acting as a powerful mucosal adjuvant. In this study, we report the transient expression in plants of a recombinant protein comprising flagellin of Salmonella typhimurium fused to the conserved region of the second subunit of HA (76-130 a.a.) of the first phylogenetic group of influenza A viruses and four tandem copies of the M2e peptide. The hybrid protein was expressed in Nicotiana benthamiana plants using the self-replicating potato virus X-based vector pEff up to 300 µg/g of fresh leaf tissue. The intranasal immunization of mice with purified fusion protein induced high levels of M2e-specific serum antibodies and provided protection against lethal challenge with influenza A virus strain A/Aichi/2/68(H3N2). Our results show that M2e and hemagglutinin-derived peptide can be used as important targets for the development of a plant-produced vaccine against influenza.

14.
Vaccines (Basel) ; 8(4)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322762

RESUMO

A series of commercial inactivated influenza vaccines (IIVs) used in the Russian National Immunization Program were characterized to evaluate their protective properties on an animal model. Standard methods for quantifying immune response, such as hemagglutination inhibition (HAI) assay and virus neutralization (VN) assay, allowed us to distinguish the immunogenic effect of various IIVs from that of placebo. However, these standard approaches are not suitable to determine the role of various vaccine components in immune response maturation. The expanded methodological base including an enzyme-linked immunosorbent assay (ELISA) and a neuraminidase ELISA (NA-ELISA) helped us to get wider characteristics and identify the effectiveness of various commercial vaccines depending on the antigen content. Investigations conducted showed that among the IIVs tested, Ultrix®, Ultrix® Quadri and VAXIGRIP® elicit the most balanced immune response, including a good NA response. For Ultrix®, Ultrix® Quadri, and SOVIGRIPP® (FORT LLC), the whole-virus specific antibody subclass IgG1, measured in ELISA, seriously prevailed over IgG2a, while, for VAXIGRIP® and SOVIGRIPP® (NPO Microgen JSC) preparations, the calculated IgG1/IgG2a ratio was close to 1. So, the immune response varied drastically across different commercial IIVs injected in mice.

15.
PLoS One ; 13(8): e0201429, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138320

RESUMO

BACKGROUND: Influenza infection could be more effectively controlled if a multi-purpose vaccine with the ability to induce responses against most, or all, influenza A subtypes could be generated. Conserved viral proteins are a promising basis for the creation of a broadly protective vaccine. In the present study, the immunogenicity and protective properties of three recombinant proteins (vaccine candidates), comprising conserved viral proteins fused with bacterial flagellin, were compared. METHODS: Balb/c mice were immunized intranasally with recombinant proteins comprising either one viral protein (the ectodomain of the M2 protein, 'M2e') or two viral proteins (M2e and the hemagglutinin second subunit 'HA2' epitope) genetically fused with flagellin. Further, two different consensus variants of HA2 were used. Therefore, three experimental positives were used in addition to the negative control (Flg-his). The mucosal, humoral, and T-cell immune responses to these constructs were evaluated. RESULT: We have demonstrated that insertion of the HA2 consensus polypeptide (aa 76-130), derived from either the first (HA2-1) or second (HA2-2) virus phylogenetic group, into the recombinant Flg4M2e protein significantly enhanced its immunogenicity and protective properties. Intranasal administration of the vaccine candidates (Flg-HA2-2-4M2e or Flg-HA2-1-4M2e) induced considerable mucosal and systemic responses directed at both the M2e-protein and, in general, the influenza A virus. However, the immune response elicited by the Flg-HA2-1-4M2e protein was weaker than the one generated by Flg-HA2-2-4M2e. These recombinant proteins containing both viral peptides provide complete protection from lethal challenge with various influenza viruses: A/H3N2; A/H2N2; and A/H5N1. CONCLUSION: This study demonstrates that the intranasal administration of Flg-HA2-2-4M2e recombinant protein induces a strong immune response which provides broad protection against various influenza viruses. This construct is therefore a strong candidate for development as a universal vaccine.


Assuntos
Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Peptídeos/imunologia , Animais , Epitopos/farmacologia , Feminino , Proteínas Filagrinas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/farmacologia , Vacinas contra Influenza/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Peptídeos/farmacologia
16.
Front Plant Sci ; 8: 247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293244

RESUMO

Agroinfiltration of plant leaves with binary vectors carrying a gene of interest within a plant viral vector is a rapid and efficient method for protein production in plants. Previously, we constructed a self-replicating vector, pA7248AMV, based on the genetic elements of potato virus X (PVX), and have shown that this vector can be used for the expression of recombinant proteins in Nicotiana benthamiana. However, this vector is almost 18 kb long and therefore not convenient for genetic manipulation. Furthermore, for efficient expression of the target protein it should be co-agroinfiltrated with an additional binary vector expressing a suppressor of post-transcriptional gene silencing. Here, we improved this expression system by creating the novel pEff vector. Its backbone is about 5 kb shorter than the original vector and it contains an expression cassette for the silencing suppressor, P24, from grapevine leafroll-associated virus-2 alongside PVX genetic elements, thus eliminating the need of co-agroinfiltration. The pEff vector provides green fluorescent protein expression levels of up to 30% of total soluble protein. The novel vector was used for expression of the influenza vaccine candidate, M2eHBc, consisting of an extracellular domain of influenza virus M2 protein (M2e) fused to hepatitis B core antigen. Using the pEff system, M2eHBc was expressed to 5-10% of total soluble protein, several times higher than with original pA7248AMV vector. Plant-produced M2eHBc formed virus-like particles in vivo, as required for its use as a vaccine. The new self-replicating pEff vector could be used for fast and efficient production of various recombinant proteins in plants.

17.
Bioengineered ; 7(1): 28-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26710263

RESUMO

The ectodomain of the conserved influenza matrix protein M2 (M2e) is a promising target for the development of a universal influenza vaccines. Immunogenicity of M2e could be enhanced by its fusion to bacterial flagellin, the ligand for Toll-like receptor 5. Previously we reported the transient expression in plants of a recombinant protein Flg-4M comprising flagellin fused to 4 tandem copies of the M2e. The use of self-replicating recombinant vector based on the potato virus X allowed expression of Flg-4M in Nicotiana benthaminana leaves at a very high level, up to about 1 mg/g of fresh leaf tissue. Intranasal immunization of mice with Flg-4M induced M2e-specific serum antibodies and provided protection against lethal challenge with different strains of influenza A virus. Here we show that immunization with Flg-4M not only generates a strong immune response, but also redirects the response from the carrier flagellin toward the M2e epitopes. Significant IgG response to M2e was also developed in bronchoalveolar lavages of immunized mice. Protective activity of Flg-4M upon lethal influenza challenge correlated with a decrease of virus titers in lungs relative to the control. Overall these data show the potential for the development of a plant-produced M2e-flagellin universal influenza vaccine.


Assuntos
Flagelina/imunologia , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/biossíntese , Influenza Humana/prevenção & controle , Nicotiana/genética , Proteínas da Matriz Viral/imunologia , Administração Intranasal , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/biossíntese , Epitopos/química , Epitopos/genética , Proteínas Filagrinas , Flagelina/genética , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Imunoglobulina G/biossíntese , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Potexvirus/genética , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Nicotiana/metabolismo , Vacinação , Proteínas da Matriz Viral/genética
18.
Vaccine ; 33(29): 3392-7, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25937448

RESUMO

The extracellular domain of the transmembrane protein M2 (M2e) of influenza A virus is a promising target for the development of "universal" vaccines against influenza. M2e is a poor immunogen by itself; however, when M2e is linked to an appropriate carrier, such as hepatitis B virus core (HBc) particles, it becomes highly immunogenic. Insertions of target peptides into the surface-exposed major immunodominant loop region (MIR) of the HBc antigen are especially immunogenic, but such insertions often affect the protein folding and formation of recombinant virus-like particles. To facilitate an appropriate conformation of the M2e insert, we introduced flexible linkers at the junction points between the insert and flanking HBc sequences. This approach allowed the construction of recombinant HBc particles carrying 1, 2 and 4 copies of M2e in the MIR region. These particles were produced in Escherichia coli and purified to homogeneity. The immune response and protective activity of hybrid HBc particles in mice correlated with the number of inserted M2e peptides: the highest immunogenicity and complete protection of mice against the lethal challenge by influenza virus was observed with particles carrying four copies of M2e. The possibility of the simultaneous presentation of M2e peptides from several important influenza strains on a single HBc particle could also facilitate the development of a broad-specificity vaccine efficient not only against influenza A strains of human origin but also for newly emerging strains of animal origin, such as the avian influenza.


Assuntos
Epitopos/imunologia , Vacinas contra Influenza/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Modelos Animais de Doenças , Epitopos/genética , Escherichia coli/genética , Feminino , Expressão Gênica , Antígenos do Núcleo do Vírus da Hepatite B/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Camundongos Endogâmicos BALB C , Mutagênese Insercional , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Análise de Sobrevida , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas da Matriz Viral/genética
19.
Vaccine ; 33(29): 3398-406, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25976545

RESUMO

A long-term objective when designing influenza vaccines is to create one with broad cross-reactivity that will provide effective control over influenza, no matter which strain has caused the disease. Here we summarize the results from an investigation into the immunogenic and protective capacities inherent in variations of a recombinant protein, HBc/4M2e. This protein contains four copies of the ectodomain from the influenza virus protein M2 (M2e) fused within the immunodominant loop of the hepatitis B virus core antigen (HBc). Variations of this basic design include preparations containing M2e from the consensus human influenza virus; the M2e from the highly pathogenic avian A/H5N1 virus and a combination of two copies from human and two copies from avian influenza viruses. Intramuscular delivery in mice with preparations containing four identical copies of M2e induced high IgG titers in blood sera and bronchoalveolar lavages. It also provoked the formation of memory T-cells and antibodies were retained in the blood sera for a significant period of time post immunization. Furthermore, these preparations prevented the death of 75-100% of animals, which were challenged with lethal doses of virus. This resulted in a 1.2-3.5 log10 decrease in viral replication within the lungs. Moreover, HBc particles carrying only "human" or "avian" M2e displayed cross-reactivity in relation to human (A/H1N1, A/H2N2 and A/H3N2) or A/H5N1 and A(H1N1)pdm09 viruses, respectively; however, with the particles carrying both "human" and "avian" M2e this effect was much weaker, especially in relation to influenza virus A/H5N1. It is apparent from this work that to quickly produce vaccine for a pandemic it would be necessary to have several variations of a recombinant protein, containing four copies of M2e (each one against a group of likely influenza virus strains) with these relevant constructs housed within a comprehensive collection Escherichia coli-producers and maintained ready for use.


Assuntos
Proteção Cruzada , Epitopos/imunologia , Vacinas contra Influenza/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Sangue/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Reações Cruzadas , Modelos Animais de Doenças , Epitopos/genética , Escherichia coli/genética , Feminino , Expressão Gênica , Antígenos do Núcleo do Vírus da Hepatite B/genética , Imunoglobulina G/análise , Imunoglobulina G/sangue , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Pulmão/virologia , Camundongos Endogâmicos BALB C , Mutagênese Insercional , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Análise de Sobrevida , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Carga Viral , Proteínas da Matriz Viral/genética
20.
PLoS One ; 10(3): e0119520, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799221

RESUMO

Matrix 2 protein ectodomain (M2e) is considered a promising candidate for a broadly protective influenza vaccine. M2e-based vaccines against human influenza A provide only partial protection against avian influenza viruses because of differences in the M2e sequences. In this work, we evaluated the possibility of obtaining equal protection and immune response by using recombinant protein on the basis of flagellin as a carrier of the M2e peptides of human and avian influenza A viruses. Recombinant protein was generated by the fusion of two tandem copies of consensus M2e sequence from human influenza A and two copies of M2e from avian A/H5N1 viruses to flagellin (Flg-2M2eh2M2ek). Intranasal immunisation of Balb/c mice with recombinant protein significantly elicited anti-M2e IgG in serum, IgG and sIgA in BAL. Antibodies induced by the fusion protein Flg-2M2eh2M2ek bound efficiently to synthetic peptides corresponding to the human consensus M2e sequence as well as to the M2e sequence of A/Chicken/Kurgan/05/05 RG (H5N1) and recognised native M2e epitopes exposed on the surface of the MDCK cells infected with A/PR/8/34 (H1N1) and A/Chicken/Kurgan/05/05 RG (H5N1) to an equal degree. Immunisation led to both anti-M2e IgG1 and IgG2a response with IgG1 prevalence. We observed a significant intracellular production of IL-4, but not IFN-γ, by CD4+ T-cells in spleen of mice following immunisation with Flg-2M2eh2M2ek. Immunisation with the Flg-2M2eh2M2ek fusion protein provided similar protection from lethal challenge with human influenza A viruses (H1N1, H3N2) and avian influenza virus (H5N1). Immunised mice experienced significantly less weight loss and decreased lung viral titres compared to control mice. The data obtained show the potential for the development of an M2e-flagellin candidate influenza vaccine with broad spectrum protection against influenza A viruses of various origins.


Assuntos
Flagelina/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Fragmentos de Peptídeos/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Western Blotting , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Feminino , Proteínas Filagrinas , Humanos , Imunização , Influenza Humana/imunologia , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Fragmentos de Peptídeos/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA