Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Endocr J ; 68(10): 1165-1177, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33980773

RESUMO

The toxicity of certain novel perfluoroalkyl substances (PFCs) has attracted increasing attention. However, the toxic effects of sodium p-perfluorous nonenoxybenzene sulfonate (OBS) on the endocrine system have not been elucidated. In this study, OBS was added to the drinking water during the pregnancy and lactation of the healthy female mice at dietary levels of 0.0 mg/L (CON), 0.5 mg/L (OBS-L), and 5.0 mg/L (OBS-H). OBS exposure during the pregnancy and lactation resulted in the presence of OBS residues in the placenta and fetus. We also analyzed physiological and biochemical parameters and gene expression levels in mice of the F0 and F1 generations after maternal OBS exposure. The total serum cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels were significantly increased in female mice of the F0 generation. The androgen levels in the serum and the ovarian mRNA levels of androgen receptor (AR) also tended to increase after maternal OBS exposure in the F0 generation mice. Moreover, maternal OBS exposure altered the mRNA expression of endocrine-related genes in male mice of F1 generation. Notably, the serum TC and LDL-C levels were significantly increased in 8-weeks-old male mice of the F1 generation, and the serum high-density lipoprotein cholesterol (HDL-C) levels were decreased in 24-week-old male mice of the F1 generation. These results indicated that maternal OBS exposure can interfere with endocrine homeostasis in the F0 and F1 generations. Therefore, exposure to OBS during pregnancy and lactation has the potential toxic effects on the dams and male offspring, which cannot be overlooked.


Assuntos
Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/efeitos dos fármacos , Exposição Materna , Ovário/efeitos dos fármacos , Receptores Androgênicos/efeitos dos fármacos , Testículo/efeitos dos fármacos , Útero/efeitos dos fármacos , 17-Hidroxiesteroide Desidrogenases/efeitos dos fármacos , 17-Hidroxiesteroide Desidrogenases/genética , Androgênios/sangue , Animais , Colesterol/sangue , HDL-Colesterol/sangue , HDL-Colesterol/efeitos dos fármacos , LDL-Colesterol/sangue , LDL-Colesterol/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Estrogênios/sangue , Feminino , Feto/química , Lactação , Masculino , Camundongos , Tamanho do Órgão , Ovário/patologia , Placenta/química , Gravidez , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Testículo/química , Testículo/patologia , Útero/química , Útero/patologia
2.
Molecules ; 26(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770873

RESUMO

As antimicrobial resistance has been increasing, new antimicrobial agents are desperately needed. Azalomycin F, a natural polyhydroxy macrolide, presents remarkable antimicrobial activities. To investigate its pharmacokinetic characteristics in rats, the concentrations of azalomycin F contained in biological samples, in vitro, were determined using a validated high-performance liquid chromatography-ultraviolet (HPLC-UV) method, and, in vivo, samples were assayed by an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method. Based on these methods, the pharmacokinetics of azalomycin F were first investigated. Its plasma concentration-time courses and pharmacokinetic parameters in rats were obtained by a non-compartment model for oral (26.4 mg/kg) and intravenous (2.2 mg/kg) administrations. The results indicate that the oral absolute bioavailability of azalomycin F is very low (2.39 ± 1.28%). From combinational analyses of these pharmacokinetic parameters, and of the results of the in-vitro absorption and metabolism experiments, we conclude that azalomycin F is absorbed relatively slowly and with difficulty by the intestinal tract, and subsequently can be rapidly distributed into the tissues and/or intracellular f of rats. Azalomycin F is stable in plasma, whole blood, and the liver, and presents plasma protein binding ratios of more than 90%. Moreover, one of the major elimination routes of azalomycin F is its excretion through bile and feces. Together, the above indicate that azalomycin F is suitable for administration by intravenous injection when used for systemic diseases, while, by oral administration, it can be used in the treatment of diseases of the gastrointestinal tract.


Assuntos
Produtos Biológicos/farmacocinética , Macrolídeos/farmacocinética , Streptomyces/química , Animais , Biofilmes , Produtos Biológicos/sangue , Produtos Biológicos/química , Fígado/química , Fígado/metabolismo , Macrolídeos/sangue , Macrolídeos/química , Masculino , Ratos , Ratos Sprague-Dawley , Streptomyces/metabolismo
3.
Environ Sci Technol ; 54(18): 11282-11291, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32822158

RESUMO

Studies on the biomagnification of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in terrestrial ecosystems and their bioamplification during metamorphosis in insects and amphibians are scarce. Therefore, this study sought to characterize the occurrence and trophic dynamics of SCCPs and MCCPs in an insect-dominated terrestrial food web in an e-waste recycling site in South China. Median ∑SCCPs and ∑MCCPs concentrations in the organisms ranged from 2200 to 34 000 ng/g lipid weight and from 990 to 19 000 ng/g lipid weight, respectively. The homologue profiles of CPs in the predators were distinct from those in insects, presenting more short chain-high chlorinated congeners (C10-12Cl8-10). The trophic magnification factors (TMFs) of ∑SCCPs and ∑MCCPs were 2.08 and 2.45, respectively, indicating biomagnification in the terrestrial food web. A significant positive relationship between the TMFs and octanol-air partition coefficients was observed. TMFs were also positively correlated with chlorination degree but did not correlate with carbon chain length. Nonlinear correlations between metamorphosis-associated bioamplification and the octanol-water partition coefficients of SCCPs and MCCPs were observed for insects, whereas negative linear correlations were observed for amphibians, which suggested species-specific alterations to the chemicals during metamorphosis.


Assuntos
Hidrocarbonetos Clorados , Parafina , Anfíbios , Animais , Bioacumulação , China , Ecossistema , Monitoramento Ambiental , Cadeia Alimentar , Hidrocarbonetos Clorados/análise , Insetos , Parafina/análise
4.
Environ Sci Technol ; 53(22): 13427-13439, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31609598

RESUMO

The novel PFOS alternatives, 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzenesulfonate (OBS), are emerging in the Chinese market, but little is known about their ecological risks. In this study, zebrafish embryos were exposed to PFOS, F-53B, and OBS to evaluate their bioconcentration and acute metabolic consequences. Per- and polyfluoroalkyl substances (PFASs) accumulated in larvae in the order of F-53B > PFOS > OBS, with the bioconcentration factors ranging from 20 to 357. Exposure to F-53B and PFOS, but not OBS, increased energy expenditure, and reduced feed intake in a concentration-dependent manner and the expression of genes involved in metabolic pathways at the transcriptional and translational levels. Molecular docking revealed that the binding affinities of PFASs to glucokinase were decreased in the following order: F-53B > PFOS > OBS. Finally, the results of Point of Departure (PoD) indicate that metabolic end points at the molecular and organismal level are most sensitive to F-53B followed by PFOS and OBS. Collectively, F-53B has the highest bioconcentration potential and the strongest metabolism-disrupting effects, followed by PFOS and OBS. Our findings have important implications for the assessment of early developmental metabolic effects of PFOS alternatives F-53B and OBS in wildlife and humans.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Humanos , Simulação de Acoplamento Molecular , Peixe-Zebra
5.
Ecotoxicol Environ Saf ; 171: 460-466, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30639872

RESUMO

6:2 chlorinated polyfluorinated ether sulfonate (F-53B), a Chinese PFOS alternative, has recently been identified in river water, sewage sludge, wildlife and humans, causing great concerns about its potential toxic effects. Here, we report the first investigation of the toxicokinetics and oxidative stress of F-53B in adult zebrafish. Adult male and female zebrafish were exposed to 10 and 100 µg/L of F-53B for 7 days followed by a 5-d depuration period to examine bioaccumulation, distribution, and depuration of F-53B in fish. The results showed that F-53B was readily accumulated in fish tissues with log BCF values of 2.36-3.65, but was eliminated slowly (t1/2 = 152.4-358.5 h). F-53B accumulation was greater in males than in females and the concentration in tissues decreased in the following order: gonad ≈ liver ≫ gill ≫ brain in females and liver ≈ gill ≫ gonad ≫ brain in males, showing sex- and tissue- specific accumulation of F-53B in fish. After chronic exposure to F-53B for 28 days, a significant dose-dependent increase in histopathological changes in the liver were mainly manifested by vacuolation. Furthermore, F-53B also significantly reduced the enzyme activity (or content) of most of the measured oxidative stress-related markers (e.g., SOD, CAT and MDA) except for an increase in GSH-Px activity, indicating that oxidative stress was induced in zebrafish after treatment with F-53B. The results of this study provide important information on the toxicokinetics and toxic effects of F-53B, which will contribute to the ecological risk assessments of F-53B released into surface waters.


Assuntos
Alcanossulfonatos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Alcanossulfonatos/farmacocinética , Ácidos Alcanossulfônicos/farmacocinética , Animais , Cromatografia Líquida , Feminino , Fluorocarbonos/farmacocinética , Água Doce/química , Masculino , Estresse Oxidativo/efeitos dos fármacos , Rios/química , Esgotos/química , Espectrometria de Massas em Tandem , Toxicocinética , Poluentes Químicos da Água/farmacocinética
6.
Ecotoxicol Environ Saf ; 107: 186-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24952374

RESUMO

Synthetic pyrethroids (SPs) are among the most heavily used insecticides for residential and agricultural applications. Their residues have frequently been detected in aquatic ecosystems. Despite their high aquatic toxicity, their toxicokinetics are still unclear. In this study, the kinetics of uptake and depuration of three SPs, permethrin (PM), bifenthrin (BF) and λ-cyhalothrin (λ-CH), were determined for the first time using zebrafish eleutheroembryo assays. The diastereoisomer selectivity of PM in eleutheroembryos was further examined. The results indicated that three SPs were quickly taken up by eleutheroembryos. The bioaccumulation factors of the SPs ranged from 125.4 to 708.4. The depuration of SPs in zebrafish eleutheroembryos followed the first-order process. The elimination rate constants (k2) of SPs in eleutheroembryos ranged from 0.018 h(-1) to 0.0533 h(-1). The half-lives (t1/2) were in the range 13.0-38.5h. The diastereoisomer fraction (DF) values for PM in the eleutheroembryos estimated at different uptake and depuration times were all significantly greater than the original value (DF=0.43), indicating selective enrichment and elimination of cis-PM relative to trans-PM. These results reveal a high capacity for SP bioconcentration by zebrafish eleutheroembryos, suggesting that SPs possess a highly cumulative risk to fish.


Assuntos
Inseticidas/farmacocinética , Piretrinas/farmacocinética , Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero/metabolismo , Nitrilas/farmacocinética , Permetrina/farmacocinética
7.
J Hazard Mater ; 465: 133051, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38016319

RESUMO

Microplastics (MPs) can absorb environmental pollutants from the aquatic environment to cause mixed toxicity, which has received widespread attention. However, studies on the joint effects of MPs and insecticides are limited. As one of the most widely used pyrethroids, there was a large amount of residual cypermethrin (CYP) in water due to insufficient decomposition. Here, adult female zebrafish were exposed to MPs, CYP, and their mixtures for 21 days, respectively. After exposures, the MPs and CYP caused tissue damage to the liver. Hepatic triglyceride (TG) level increased significantly after MPs + CYP exposure, and the expression of genes about glycolipids metabolism was significantly altered. Furthermore, metabolome results suggested that MPs + CYP exposure resulted in increased content of some glycerophospholipid, affecting phospholipid metabolism-related pathways. In addition, through 16 s rDNA sequencing, it was found that MPs + CYP led to significant changes in the proportion of dominant phyla. Interestingly, Cetobacterium which increased in CYP and the co-exposure group was positively correlated with most lipid metabolites. Our results suggested that co-exposure to MPs and CYP enhanced the disturbances in hepatic phospholipid metabolism by affecting the gut microbial composition, while these changes were not observed in separate treatment groups. These results emphasized the importance of studying the joint toxicity of MPs and insecticides.


Assuntos
Microbioma Gastrointestinal , Inseticidas , Perciformes , Piretrinas , Poluentes Químicos da Água , Animais , Feminino , Poliestirenos/toxicidade , Microplásticos/toxicidade , Peixe-Zebra/metabolismo , Plásticos/toxicidade , Inseticidas/metabolismo , Fosfolipídeos/metabolismo , Piretrinas/metabolismo , Fígado/metabolismo , Perciformes/metabolismo , Poluentes Químicos da Água/toxicidade
8.
Sci Total Environ ; 920: 170948, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38365036

RESUMO

Microplastics (MPs) can adsorb and desorb organic pollutants, which may alter their biotoxicities. Although the toxicity of perfluorooctane sulfonate (PFOS) and its alternative 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) to organisms has been reported, the comparative study of their combined toxic effects with MPs on aquatic organisms is limited. In this study, adult female zebrafish were exposed to 10 µg/L PFOS/F-53B and 50 µg/L MPs alone or in combination for 14 days to investigate their single and combined toxicities. The results showed that the presence of MPs reduced the concentration of freely dissolved PFOS and F-53B in the exposure solution but did not affect their bioaccumulation in the zebrafish liver and gut. The combined exposure to PFOS and MPs had the greatest impact on liver oxidative stress, immunoinflammatory, and energy metabolism disorders. 16S rRNA gene sequencing analysis revealed that the combined exposure to F-53B and MPs had the greatest impact on gut microbiota. Functional enrichment analysis predicted that the alternations in the gut microbiome could interfere with signaling pathways related to immune and energy metabolic processes. Moreover, significant correlations were observed between changes in gut microbiota and immune and energy metabolism indicators, highlighting the role of gut microbiota in host health. Together, our findings demonstrate that combined exposure to PFOS/F-53B and MPs exacerbates liver immunotoxicity and disturbances in energy metabolism in adult zebrafish compared to single exposure, potentially through dysregulation of gut microbiota.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Feminino , Peixe-Zebra/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , RNA Ribossômico 16S , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/metabolismo , Fluorocarbonos/análise
9.
Eur Stroke J ; 9(1): 235-243, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37905729

RESUMO

INTRODUCTION: The role of serum uric acid (UA) levels in the functional recovery of ischemic stroke remains uncertain. To evaluate whether UA could predict clinical outcomes in patients with ischemic stroke. PATIENTS AND METHODS: A three-stage study design was employed, combining a large-scale prospective cohort study, a meta-analysis and a Mendelian randomization (MR) analysis. Firstly, we conducted a cohort study using data from the Nanjing Stroke Registry Program (NSRP) to assess the association between UA levels and 3-month functional outcomes in ischemic stroke patients. Secondly, the meta-analysis was conducted to integrate currently available cohort evidence. Lastly, MR analysis was utilized to explore whether genetically determined UA had a causal link to the functional outcomes of ischemic stroke using summary data from the CKDGen and GISCOME datasets. RESULTS: In the first stage, the cohort study included 5631 patients and found no significant association between UA levels and functional outcomes at 3 months after ischemic stroke. In the second stage, the meta-analysis, including 10 studies with 14,657 patients, also showed no significant association between UA levels and stroke prognosis. Finally, in the third stage, MR analysis using data from 6165 patients in the GISCOME study revealed no evidence of a causal relationship between genetically determined UA and stroke functional outcomes. DISCUSSION AND CONCLUSION: Our comprehensive triangulation approach found no significant association between UA levels and functional outcomes at 3 months after ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ácido Úrico , AVC Isquêmico/genética , Estudos de Coortes , Estudos Prospectivos , Análise da Randomização Mendeliana , Prognóstico , Acidente Vascular Cerebral/epidemiologia
10.
Ecotoxicol Environ Saf ; 89: 189-95, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23294635

RESUMO

Butachlor is a chloroacetanilide herbicide widely employed in weeding important crops. Recently, the study of the possible toxic effects of butachlor in non-target organisms has increased substantially. However, the endocrine disruption, developmental toxicity and immunotoxicity effects of butachlor in fish have not been fully investigated in previous studies. In the present study, zebrafish embryos were exposed to a range of butachlor concentrations from 4 to 20 µM to evaluate the embryonic toxicity of butachlor until 84 hours postfertilization (hpf). The results demonstrated that butachlor was highly toxic to zebrafish embryos, hindering the hatching process, resulting in a series of malformations and followed by mortality. The malformations observed included pericardial edema (PE) and yolk sac edema (YSE), which showed concentration-dependent responses. The analysis of endocrine gene transcription indicated that butachlor significantly induced the expression of the estrogen-responsive gene Vtg1 but had no effect on the expression of the ERα gene. The innate immune system appeared to be another possible target of butachlor. At 72 hpf, butachlor significantly up-regulated the innate immune system-related genes, including IL-1ß, CC-chem, CXCL-C1c and IL-8. These data suggest that butachlor causes developmental toxicity, endocrine disruption and immune toxicity in the zebrafish embryo. Bidirectional interactions between the endocrine system and the immune system might be present, and further studies are needed to determine these possible pathways.


Assuntos
Acetanilidas/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Sistema Endócrino/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia , Animais , Quimiocinas CXC/metabolismo , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Interleucina-8/metabolismo , Pericárdio/efeitos dos fármacos , Vitelogeninas/metabolismo , Saco Vitelino/efeitos dos fármacos , Peixe-Zebra/metabolismo
11.
Chemosphere ; 341: 140068, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37672812

RESUMO

The extensive use of the perfluorooctane sulfonate (PFOS) alternative sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has resulted in its widespread detection in the environment and enrichment in wildlife and humans. However, little is known about its potential toxicity, particularly in terms of body development. In this study, zebrafish embryos were acutely exposed to PFOS and OBS for a comparative developmental toxicity assessment. Both PFOS and OBS led to lower body weight and shorter body length, and the damaging effects of PFOS were more severe than those of OBS at the same exposure concentration. Biochemical assays of THs and transcription profiles correlated to the HPT axis demonstrated that OBS-induced body development inhibition resulted mainly from interference in THs synthesis, transfer, coupling with receptors, and conversion from T4 to T3, which was similar to the case of PFOS, except that the disruptive effects of OBS on thyroid function were more intense. Further transcriptome analysis showed that PFOS and OBS also promoted osteoclast differentiation, aggravating the inhibitory effects on body growth, and that PFOS had more obvious inhibitory effects than OBS. This study systematically explored the inhibitory effects of PFOS and OBS exposure on body development and tightly linked the toxic effects to thyroid function disorder and osteoclast differentiation. Our findings highlight that the health risks associated with OBS, an emerging substitute for PFOS, should not be ignored.


Assuntos
Osteoclastos , Glândula Tireoide , Animais , Peixe-Zebra
12.
Environ Int ; 176: 107977, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37244004

RESUMO

Several per- and polyfluoroalkyl substances (PFAS) have been linked to metabolic disorders in organisms. However, few studies have considered their combined effects, which would be more representative of PFAS occurring in the environment. In this study, zebrafish embryos were exposed to a mixture of 18 PFAS at three environmentally relevant concentrations for 5 days to assess their bioconcentration and metabolic consequences. The burdens of ∑PFAS in zebrafish larvae were 0.12, 1.58, and 9.63 mg/kg in the 0.5, 5, and 50 µg/L treatment groups, respectively. Exposure to the PFAS mixture accelerated hatching and larval heart rates, increased energy expenditure, and reduced ATP levels and glucose contents due to decreased feed intake and glucose uptake. Metabolomic analysis revealed that exposure to the PFAS mixture enhanced glycolysis but inhibited phospholipid synthesis, and significantly increased the expression of lipid metabolism related genes (srebf1, acox, and pparα), which indicated enhanced ß-oxidation. The significant changes in mitochondrial membrane potential, mitochondrial content, and the transcription of genes involved in the mitochondrial respiratory chain (mfn2, ndufs1, atp5fa1, and mt-nd1) and mitochondrial DNA replication and transcription (18rs-rrn, and polg1) suggested that exposure to the PFAS mixture could cause mitochondrial dysfunction and further disrupt glucose and lipid metabolic pathways, ultimately causing metabolic disorders in zebrafish larvae. These findings demonstrate the importance of assessing the metabolic effects of PFAS mixtures on early development in wildlife and humans.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Doenças Metabólicas , Humanos , Animais , Peixe-Zebra/metabolismo , Larva , Mitocôndrias , Ácidos Alcanossulfônicos/metabolismo
13.
Environ Pollut ; 326: 121479, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958660

RESUMO

Perfluorooctanesulfonic acid (PFOS) has widely been reported to persist in the environment and to elicit neurotoxicological effects in wildlife and humans. Following the restriction of PFOS use, 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) have emerged as novel PFOS alternatives and have been detected in the environment. However, knowledge on the toxicological effects of these alternatives remains scarce. Using developing transgenic Tg(dat:eGFP) zebrafish, we evaluated the consequences of exposure to 0, 0.1 and 1 mg/l PFOS, F-53B and OBS on the dopaminergic system, locomotor behaviour and mitochondrial function. All compounds generally reduced locomotor activity under light conditions irrespective of exposure concentration. Exposure to OBS (at all concentrations), as well as PFOS and F-53B (at 1 mg/l), significantly reduced subpallial dopaminergic neuron abundance. PFOS also significantly reduced dat and pink1 expression irrespective of exposure concentration, while F-53B and OBS tended to reduce mitochondrial pink1 and fis1 expression across concentrations without reaching statistical significance. Mitochondrial function, in the form of reduced oxygen consumption rate and marginally inhibited ATP-linked oxygen consumption rate, was affected only in response to 1 mg/l PFOS. Together, PFOS and the emerging contaminants F-53B and OBS inhibit locomotion at similar concentrations, a finding correlated with decreased dopaminergic neuron numbers in the subpallium and decreased expression of pink1. These findings are relevant to wildlife and human health, as they suggest that PFOS as well as replacement compounds affect locomotion likely in part by negatively impacting the dopamine system.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Humanos , Peixe-Zebra/metabolismo , Dopamina/metabolismo , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Animais Selvagens , Proteínas Quinases/metabolismo
14.
J Hazard Mater ; 448: 130959, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860044

RESUMO

As alternatives to perfluorooctane sulfonate (PFOS), 6:2 Cl-PFESA (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) are frequently detected in aquatic environments, but little is known about their neurotoxicity, especially in terms of circadian rhythms. In this study, adult zebrafish were chronically exposed to 1 µM PFOS, F-53B and OBS for 21 days taking circadian rhythm-dopamine (DA) regulatory network as an entry point to comparatively investigate their neurotoxicity and underlying mechanisms. The results showed that PFOS may affect the response to heat rather than circadian rhythms by reducing DA secretion due to disruption of calcium signaling pathway transduction caused by midbrain swelling. In contrast, F-53B and OBS altered the circadian rhythms of adult zebrafish, but their mechanisms of action were different. Specifically, F-53B might alter circadian rhythms by interfering with amino acid neurotransmitter metabolism and disrupting blood-brain barrier (BBB) formation, whereas OBS mainly inhibited canonical Wnt signaling transduction by reducing cilia formation in ependymal cells and induced midbrain ventriculomegaly, finally triggering imbalance in DA secretion and circadian rhythm changes. Our study highlights the need to focus on the environmental exposure risks of PFOS alternatives and the sequential and interactive mechanisms of their multiple toxicities.


Assuntos
Ácidos Alcanossulfônicos , Peixe-Zebra , Animais , Ritmo Circadiano
15.
Chemosphere ; 336: 139253, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37331668

RESUMO

As emerging alternatives to perfluorooctane sulfonate (PFOS), 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA) and sodium p-perfluorous nonenox-benzenesulfonate (OBS) were frequently detected in the four freshwater fish species collected from Poyang Lake. Median concentrations of 6:2 Cl-PFESA and OBS in fish tissues were 0.046-6.0 and 0.46-5.1 ng/g wet weight, respectively. The highest concentrations of 6:2 Cl-PFESA was found in fish livers, whereas OBS was found in the pancreas, brain, gonads, and skin. The tissue distribution pattern of 6:2 Cl-PFESA is similar to that of PFOS. The tissue/liver ratios of OBS were higher than those of PFOS, suggesting that OBS has a greater tendency to transfer from the liver to other tissues. The logarithmic bioaccumulation factors (log BAFs) of 6:2 Cl-PFESA in three carnivorous fish species were greater than 3.7, whereas those of OBS were less than 3.7, indicating that 6:2 Cl-PFESA had a strong bioaccumulation potential. Notably, sex- and tissue-specific bioaccumulation of OBS has also been observed in catfish. Most tissues (except the gonads) exhibited higher OBS concentrations in males than in females. However, no differences were found for 6:2 Cl-PFESA and PFOS. Maternal transfer efficiency of OBS was higher than that of 6:2 Cl-PFESA and PFOS in catfish (p < 0.05), indicating that OBS presents a higher risk of exposure to males and offspring through maternal offloading.


Assuntos
Ácidos Alcanossulfônicos , Peixes-Gato , Fluorocarbonos , Animais , Feminino , Ácidos Alcanossulfônicos/análise , Bioacumulação , China , Éteres , Fluorocarbonos/análise , Lagos , Distribuição Tecidual , Masculino
16.
J Hazard Mater ; 425: 127950, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34894504

RESUMO

6:2 Chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) are widely used as perfluorooctane sulfonate (PFOS) alternatives in the Chinese market. Here, adult zebrafish were chronically exposed to 1 µM PFOS, F-53B, and OBS for 21 days to investigate the comparative immunotoxicity of these three per- and polyfluoroalkyl substances (PFAS). PFOS induced more severe oxidative stress in the liver than F-53B and OBS, and these three PFAS induced similar anti-inflammatory effects by repressing the expression of pro-inflammatory cytokines. The intestinal microbiota analysis showed that the relative abundance of Plesiomonas, Aeromonas, Cetobacterium, Shewanella, and Vibrio changed with the same trend in the three PFAS treatment groups. Furthermore, the PFAS increased the expression of hepcidin, muc, the immune-related genes mpo and saa, and decreased the expression of the tight junction-related gene occ in the intestine; moreover, villus height of the intestine was reduced after PFAS exposure, which indicated the functional disruption of the intestine. In particular, the significant correlation between the changed intestinal microbiota and liver and intestinal indicators also suggested the interaction between the immune system and intestinal microbiota. Taken together, our results indicate that exposure to PFOS and its alternatives F-53B and OBS can induce hepatic immunotoxicity associated with intestinal microbiota dysbiosis in adult zebrafish.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Microbioma Gastrointestinal , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/toxicidade , Animais , Disbiose/induzido quimicamente , Fluorocarbonos/toxicidade , Sistema Imunitário , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
17.
Environ Int ; 166: 107351, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35738203

RESUMO

Perfluorooctane sulfonate (PFOS) has been reported to induce hepatotoxicity in wildlife and humans. Novel PFOS alternatives have been widely used following restrictions on PFOS, but little is known about their potential toxicity. Here, the first comprehensive investigation on the chronic hepatotoxicity and underlying molecular mechanisms of PFOS, 6:2Cl-PFESA (F-53B), and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) was carried out on adult zebrafish through a histopathological examination, biochemical measurement, and multi-omics analysis. PFOS and its alternatives caused changes in liver histopathology and liver function indices in the order of F-53B > PFOS > OBS, which was consistent with their concentration in the liver. In silico modeling and transcriptional profiles suggested that the aberrant hepatic lipid metabolism induced by F-53B and PFOS was initiated by the action on peroxisome proliferator-activated receptor γ (PPARγ), which triggered changes in downstream genes transcription and led to an imbalance between lipid synthesis and expenditure. Gut microbiome analysis provided another novel mechanistic perspective that changes in the abundance of Legionella, Ralstonia, Brevundimonas, Alphaproteobacteria, Plesiomonas, and Hyphomicrobium might link to alterations in the PPAR pathway based on their significant correlation. This study provides insight into the molecular mechanisms of hepatotoxicity induced by PFOS and its novel alternatives and highlights the need for concern about their environmental exposure risks.

18.
Sci Total Environ ; 839: 156388, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35654180

RESUMO

The increasing use of perfluorooctanesulfonate (PFOS) alternatives has led to their release into the aquatic environment. This study sought to determine the effects of exposure concentration on the toxicokinetics of PFOS and its alternatives, including perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzenesulfonate (OBS) in adult zebrafish by exposure to mixtures of the five per- and polyfluoroalkyl substances (PFAS) at 1, 10, and 100 ng/mL for 28-day, followed by a 14-day depuration. PFAS predominantly accumulated in the blood and liver, and the bioconcentration factor (BCF) decreased in the order of F-53B > PFOS > OBS ≫ PFHxS > PFBS in whole-fish homogenates. The uptake rate constants and BCF of the short-chain PFAS (≤C6) positively correlated with increasing exposure concentration, while the long-chain PFAS (≥C8) exhibited a pattern of first increasing and then decreasing. A consistent increase in the elimination rate constants of short- and long-chain PFAS was observed with increasing exposure concentration. All PFAS form tight conformations with ZSA and ZL-FABP via hydrogen bonding as revealed by molecular docking analysis. Furthermore, chronic combined exposure to PFAS induced the occurrence of vacuolation and oxidative stress in the zebrafish liver. Our findings uniquely inform the concentration-dependent bioconcentration potential and health risks to aquatic organisms of these PFOS alternatives in the environment.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/toxicidade , Animais , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Simulação de Acoplamento Molecular , Toxicocinética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
19.
Chemosphere ; 295: 133855, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35124087

RESUMO

Thirty-five legacy and emerging per- and polyfluoroalkyl substances (PFAS) were analyzed in surface water and sediments collected from Poyang Lake, the largest freshwater lake in China. The Æ©PFAS concentrations ranged from 23 to 1000 ng/L in water dissolved phase, 1.3-9.8 ng/L in suspended particulate matters, and 0.26-2.9 ng/g dry weight in sediments. Short-chain and emerging PFAS were predominant in surface water and sediments, rather than legacy perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Hexafluoropropylene oxide dimer/trimer acid (HFPO-DA/TA), 6:2 and 8:2 chlorinated polyfluorinated ether sulfonic acids (6:2 and 8:2 Cl-PFESAs), 6:2 fluorotelomer sulfonate (6:2 FTS), and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) were detected in all samples, indicating that these emerging PFAS have been widely produced and used in this region. The high concentrations of HFPO-DA/TA, 6:2 FTS, 6:2, 8:2 Cl-PFESAs, and OBS in sediments and their higher water-sediment distribution coefficients than those of predecessors (PFOA or PFOS) suggest that lake sediments could be an important long-term sink for these emerging alternatives. The positive matrix factorization model demonstrated that food packaging and textile treatments (50%) and fluoropolymer manufacturing (26% for alternative sources and 8.2% for legacy sources) were the two major sources of PFAS in Poyang Lake. The influx and outflux of total PFAS in Poyang Lake were 9.0 and 12.8 ton/year, respectively, and the OBS flux was estimated for the first time. The results provide insights into the environmental behavior and fate of emerging PFAS in freshwater ecosystems.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , China , Ecossistema , Monitoramento Ambiental , Fluorocarbonos/análise , Lagos , Água , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 794: 148775, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34323766

RESUMO

Sodium ρ-perfluorous nonenoxybenzene sulfonate (OBS), a novel kind of perfluoroalkyl and polyfluoroalkyl compound, has been widely detected in the environment. The toxicity of OBS to living organisms has become a public concern. A growing body of research showed that maternal exposure to environmental pollutants caused intestinal and metabolic diseases that could be conserved across offspring. Here, female C57BL/6 mice were treated OBS at dietary levels of 0.0 mg/L (CON), 0.5 mg/L (OBS-L) and 5.0 mg/L (OBS-H) during the gestation and lactation periods. The results demonstrated that OBS treatment not only induced significant changes in the mucus secretion and ionic transport, but also disrupted the expression of antimicrobial peptides (AMPs) in the intestine of F0 and F1 generations. Additionally, OBS exposure altered bile acids metabolism and affected the transcriptional levels of critical genes involved in bile acids synthesis, signaling transfer, transportation and apical uptake. Together, all these results indicated that OBS exposure was perceived as a major stress by the intestinal epithelium that strongly affected the intestinal barrier function (including mucus, CFTR, AMPs, inflammation), and ultimately led to imbalance in the metabolism of bile acids (BAs). Moreover, we found that maternal OBS exposure had a more obvious toxicity effect on the male offspring in this experiment. Taken together, maternal OBS exposure during pregnancy and lactation had the intestinal and metabolism toxic effects on the dams and offspring, indicating that effects of maternal exposure on the toxicity of offspring could not be ignored.


Assuntos
Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Intestinos , Lactação , Masculino , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Nutrientes , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA