RESUMO
Mutations in ABCA4 are the most common cause of Mendelian retinal disease. Clinical evaluation of this gene is challenging because of its extreme allelic diversity, the large fraction of non-exomic mutations, and the wide range of associated disease. We used patient-derived retinal organoids as well as DNA samples and clinical data from a large cohort of patients with ABCA4-associated retinal disease to investigate the pathogenicity of a variant in ABCA4 (IVS30 + 1321 A > G) that occurs heterozygously in 2% of Europeans. We found that this variant causes mis-splicing of the gene in photoreceptor cells such that the resulting protein contains 36 incorrect amino acids followed by a premature stop. We also investigated the phenotype of 10 patients with compound genotypes that included this mutation. Their median age of first vision loss was 39 years, which is in the mildest quintile of a large cohort of patients with ABCA4 disease. We conclude that the IVS30 + 1321 A > G variant can cause disease when paired with a sufficiently deleterious opposing allele in a sufficiently permissive genetic background.
RESUMO
The m.3243A>G mutation in the mitochondrial genome commonly causes retinal degeneration in patients with maternally inherited diabetes and deafness and mitochondrial encephalopathy, lactic acidosis and stroke-like episodes. Like other mitochondrial mutations, m.3243A>G is inherited from the mother with a variable proportion of wild type and mutant mitochondrial genomes in different cells. The mechanism by which the m.3243A>G variant in each tissue relates to the manifestation of disease phenotype is not fully understood. Using a digital PCR assay, we found that the % m.3243G in skin derived dermal fibroblasts was positively correlated with that of blood from the same individual. The % m.3243G detected in fibroblast cultures remained constant over multiple passages and was negatively correlated with mtDNA copy number. Although the % m.3243G present in blood was not correlated with severity of vision loss, as quantified by Goldmann visual field, a significant negative correlation between % m.3243G and the age of onset of visual symptoms was detected. Altogether, these results indicate that precise measurement of % m.3243G in clinically accessible tissues such as skin and blood may yield information relevant to the management of retinal m.3243A>G-associated disease.
Assuntos
Diabetes Mellitus Tipo 2 , Síndrome MELAS , Doenças Mitocondriais , DNA Mitocondrial/genética , Surdez , Diabetes Mellitus Tipo 2/genética , Humanos , Síndrome MELAS/genética , Doenças Mitocondriais/genética , MutaçãoRESUMO
The human choroid is a heterogeneous, highly vascular connective tissue that dysfunctions in age-related macular degeneration (AMD). In this study, we performed single-cell RNA sequencing on 21 human choroids, 11 of which were derived from donors with early atrophic or neovascular AMD. Using this large donor cohort, we identified new gene expression signatures and immunohistochemically characterized discrete populations of resident macrophages, monocytes/inflammatory macrophages and dendritic cells. These three immune populations demonstrated unique expression patterns for AMD genetic risk factors, with dendritic cells possessing the highest expression of the neovascular AMD-associated MMP9 gene. Additionally, we performed trajectory analysis to model transcriptomic changes across the choroidal vasculature, and we identified expression signatures for endothelial cells from choroidal arterioles and venules. Finally, we performed differential expression analysis between control, early atrophic AMD, and neovascular AMD samples, and we observed that early atrophic AMD samples had high expression of SPARCL1, a gene that has been shown to increase in response to endothelial damage. Likewise, neovascular endothelial cells harbored gene expression changes consistent with endothelial cell damage and demonstrated increased expression of the sialomucins CD34 and ENCM, which were also observed at the protein level within neovascular membranes. Overall, this study characterizes the molecular features of new populations of choroidal endothelial cells and mononuclear phagocytes in a large cohort of AMD and control human donors.
Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Inibidores da Angiogênese , Corioide , Neovascularização de Coroide/genética , Células Endoteliais , Humanos , Macrófagos , Transcriptoma/genética , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Degeneração Macular Exsudativa/complicaçõesRESUMO
Some human retinal diseases are characterized by pathology that is restricted to specific cell types and to specific regions of the eye. Several disease entities either selectively affect or spare the macula, the retina region at the center of the posterior pole. Photoreceptor cells in the macula are involved in high-acuity vision and require metabolic support from non-neuronal cell types. Some macular diseases involve the retinal pigment epithelium (RPE), an epithelial cell layer with several metabolic-support functions essential for the overlying photoreceptors. In the current study, the ways in which RPE confers region-specific disease susceptibility were determined by examining heterogeneity within RPE tissue from human donors. RPE nuclei from the macular and peripheral retina were profiled using joint single-nucleus RNA and ATAC sequencing. The expression of several genes differed between macular and peripheral RPE. Region-specific ATAC peaks were found, suggesting regulatory elements used exclusively by macular or peripheral RPE. Across anatomic regions, subpopulations of RPE were identified that appeared to have differential levels of expression of visual cycle genes. Finally, loci associated with age-related macular degeneration were examined for a better understanding of RPE-specific disease phenotypes. These findings showed variations in the regulation of gene expression in the human RPE by region and subpopulation, and provide a source for a better understanding of the molecular basis of macular disease.
Assuntos
Degeneração Macular , Doenças Retinianas , Humanos , Epitélio Pigmentado da Retina/metabolismo , Transcriptoma/genética , Cromatina/genética , Cromatina/metabolismo , Retina/patologia , Degeneração Macular/patologia , Doenças Retinianas/patologiaRESUMO
PURPOSE: To investigate the distribution of genotypes and natural history of ABCA4-associated retinal disease in a large cohort of patients seen at a single institution. DESIGN: Retrospective, single-institution cohort review. PARTICIPANTS: Patients seen at the University of Iowa between November 1986 and August 2022 clinically suspected to have disease caused by sequence variations in ABCA4. METHODS: DNA samples from participants were subjected to a tiered testing strategy progressing from allele-specific screening to whole genome sequencing. Charts were reviewed, and clinical data were tabulated. The pathogenic severity of the most common alleles was estimated by studying groups of patients who shared 1 allele. Groups of patients with shared genotypes were reviewed for evidence of modifying factor effects. MAIN OUTCOME MEASURES: Age at first uncorrectable vision loss, best-corrected visual acuity, and the area of the I2e isopter of the Goldmann visual field. RESULTS: A total of 460 patients from 390 families demonstrated convincing clinical features of ABCA4-associated retinal disease. Complete genotypes were identified in 399 patients, and partial genotypes were identified in 61. The median age at first vision loss was 16 years (range, 4-76 years). Two hundred sixty-five families (68%) harbored a unique genotype, and no more than 10 patients shared any single genotype. Review of the patients with shared genotypes revealed evidence of modifying factors that in several cases resulted in a > 15-year difference in age at first vision loss. Two hundred forty-one different alleles were identified among the members of this cohort, and 161 of these (67%) were found in only a single individual. CONCLUSIONS: ABCA4-associated retinal disease ranges from a very severe photoreceptor disease with an onset before 5 years of age to a late-onset retinal pigment epithelium-based condition resembling pattern dystrophy. Modifying factors frequently impact the ABCA4 disease phenotype to a degree that is similar in magnitude to the detectable ABCA4 alleles themselves. It is likely that most patients in any cohort will harbor a unique genotype. The latter observations taken together suggest that patients' clinical findings in most cases will be more useful for predicting their clinical course than their genotype. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Genótipo , Doenças Retinianas , Acuidade Visual , Humanos , Estudos Retrospectivos , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Adulto , Transportadores de Cassetes de Ligação de ATP/genética , Adolescente , Criança , Acuidade Visual/fisiologia , Adulto Jovem , Pré-Escolar , Doenças Retinianas/genética , Doenças Retinianas/diagnóstico , Campos Visuais/fisiologia , Estudos Longitudinais , Mutação , Alelos , Tomografia de Coerência ÓpticaRESUMO
Inherited retinal degeneration is a term used to describe heritable disorders that result from the death of light sensing photoreceptor cells. Although we and others believe that it will be possible to use gene therapy to halt disease progression early in its course, photoreceptor cell replacement will likely be required for patients who have already lost their sight. While advances in autologous photoreceptor cell manufacturing have been encouraging, development of technologies capable of efficiently delivering genome editing reagents to stem cells using current good manufacturing practices (cGMP) are needed. Gene editing reagents were delivered to induced pluripotent stem cells (iPSCs) using a Zephyr microfluidic transfection platform (CellFE). CRISPR-mediated cutting was quantified using an endonuclease assay. CRISPR correction was confirmed via digital PCR and Sanger sequencing. The resulting corrected cells were also karyotyped and differentiated into retinal organoids. We describe use of a novel microfluidic transfection platform to correct, via CRISPR-mediated homology-dependent repair (HDR), a disease-causing NR2E3 mutation in patient-derived iPSCs using cGMP compatible reagents and approaches. We show that the resulting cell lines have a corrected genotype, exhibit no off-target cutting, retain pluripotency and a normal karyotype and can be differentiated into retinal tissue suitable for transplantation. The ability to codeliver CRISPR/Cas9 and HDR templates to patient-derived iPSCs without using proprietary transfection reagents will streamline manufacturing protocols, increase the safety of resulting cell therapies, and greatly reduce the regulatory burden of clinical trials.
Assuntos
Edição de Genes , Células-Tronco Pluripotentes Induzidas , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Microfluídica , TransfecçãoRESUMO
The choriocapillaris is a dense vascular bed in the inner choroid that supplies the photoreceptor cells and retinal pigment epithelium (RPE). While loss of choriocapillaris density has been described in association with age-related macular degeneration (AMD), whether these changes are primary or secondary to RPE degenerative changes in AMD has been debated. In this study we characterized choriocapillaris loss by quantifying "ghost" vessels in a series of 99 human donor maculae labeled with the UEA-I lectin, and found significant increases in early-intermediate AMD and a greater difference in geographic atrophy in areas with intact RPE. Eyes were genotyped at the CFH Tyr402His locus, and those homozygous for the His allele showed significantly more ghost vessels than those with other genotypes. When only non-AMD eyes were evaluated, His homozygotes had increased ghost vessel density but this trend did not reach statistical significance. These results support the notion that choriocapillaris death often precedes RPE degeneration in AMD and that this loss is an important therapeutic consideration for AMD.
RESUMO
In humans, mutations in the beta subunit of cGMP-phosphodiesterase type 6 (PDE6B) cause autosomal recessive retinitis pigmentosa (RP), which typically has an aggressive clinical course of early-onset severe vision loss due to rapid photoreceptor degeneration. In this study, we describe the generation of a novel Pde6b-deficient rat model using CRISPR-Cas9 genome editing. We characterize the model at multiple time points using clinical imaging modalities as well as histology with immunohistochemistry to show rapid photoreceptor degeneration compared to wild-type and heterozygous animals. We describe the manufacture of two different adeno-associated viral (AAV) vectors (AAV2/1, AAV2/5) under current Good Manufacturing Practices (cGMP) and demonstrate their ability to drive human PDE6B expression in vivo. We further demonstrate the ability of AAV-mediated subretinal gene therapy to delay photoreceptor loss in Pde6b-deficient rats compared to untreated controls. However, severe progressive photoreceptor loss was noted even in treated eyes, likely due to the aggressive nature of the disease. These data provide useful preclinical data to guide the development of potential human gene therapy for PDE6B-associated RP. In addition, the rapid photoreceptor degeneration of the Pde6b-deficient rat with intact inner retina may provide a useful model for the study of cell replacement strategies.
Assuntos
Degeneração Retiniana , Retinose Pigmentar , Ratos , Animais , Humanos , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Dependovirus/genética , Retina/metabolismo , Retinose Pigmentar/genética , Terapia Genética/métodos , Modelos Animais de Doenças , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismoRESUMO
The human neural retina is a light sensitive tissue with remarkable spatial and cellular organization. Compared with the periphery, the central retina contains more densely packed cone photoreceptor cells with unique morphologies and synaptic wiring. Some regions of the central retina exhibit selective degeneration or preservation in response to retinal disease and the basis for this variation is unknown. In this study, we used both bulk and single-cell RNA sequencing to compare gene expression within concentric regions of the central retina. We identified unique gene expression patterns of foveal cone photoreceptor cells, including many foveal-enriched transcription factors. In addition, we found that the genes RORB1, PPFIA1 and KCNAB2 are differentially spliced in the foveal, parafoveal and macular regions. These results provide a highly detailed spatial characterization of the retinal transcriptome and highlight unique molecular features of different retinal regions.
Assuntos
Células Fotorreceptoras Retinianas Cones , Doenças Retinianas , Fóvea Central , Humanos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Doenças Retinianas/genética , Transcriptoma/genéticaRESUMO
Dominantly inherited disorders are not typically considered to be therapeutic candidates for gene augmentation. Here, we utilized induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) to test the potential of gene augmentation to treat Best disease, a dominant macular dystrophy caused by over 200 missense mutations in BEST1. Gene augmentation in iPSC-RPE fully restored BEST1 calcium-activated chloride channel activity and improved rhodopsin degradation in an iPSC-RPE model of recessive bestrophinopathy as well as in two models of dominant Best disease caused by different mutations in regions encoding ion-binding domains. A third dominant Best disease iPSC-RPE model did not respond to gene augmentation, but showed normalization of BEST1 channel activity following CRISPR-Cas9 editing of the mutant allele. We then subjected all three dominant Best disease iPSC-RPE models to gene editing, which produced premature stop codons specifically within the mutant BEST1 alleles. Single-cell profiling demonstrated no adverse perturbation of retinal pigment epithelium (RPE) transcriptional programs in any model, although off-target analysis detected a silent genomic alteration in one model. These results suggest that gene augmentation is a viable first-line approach for some individuals with dominant Best disease and that non-responders are candidates for alternate approaches such as gene editing. However, testing gene editing strategies for on-target efficiency and off-target events using personalized iPSC-RPE model systems is warranted. In summary, personalized iPSC-RPE models can be used to select among a growing list of gene therapy options to maximize safety and efficacy while minimizing time and cost. Similar scenarios likely exist for other genotypically diverse channelopathies, expanding the therapeutic landscape for affected individuals.
Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Degeneração Macular/genética , Mutação/genética , Alelos , Bestrofinas/genética , Cálcio/metabolismo , Linhagem Celular , Canalopatias/genética , Proteínas do Olho/genética , Edição de Genes/métodos , Terapia Genética/métodos , Genótipo , Células HEK293 , Humanos , Epitélio Pigmentado da Retina/fisiologiaRESUMO
BACKGROUND: Inherited retinal degeneration is a leading cause of incurable vision loss in the developed world. While autologous iPSC mediated photoreceptor cell replacement is theoretically possible, the lack of commercially available technologies designed to enable high throughput parallel production of patient specific therapeutics has hindered clinical translation. METHODS: In this study, we describe the use of the Cell X precision robotic cell culture platform to enable parallel production of clinical grade patient specific iPSCs. The Cell X is housed within an ISO Class 5 cGMP compliant closed aseptic isolator (Biospherix XVivo X2), where all procedures from fibroblast culture to iPSC generation, clonal expansion and retinal differentiation were performed. RESULTS: Patient iPSCs generated using the Cell X platform were determined to be pluripotent via score card analysis and genetically stable via karyotyping. As determined via immunostaining and confocal microscopy, iPSCs generated using the Cell X platform gave rise to retinal organoids that were indistinguishable from organoids derived from manually generated iPSCs. In addition, at 120 days post-differentiation, single-cell RNA sequencing analysis revealed that cells generated using the Cell X platform were comparable to those generated under manual conditions in a separate laboratory. CONCLUSION: We have successfully developed a robotic iPSC generation platform and standard operating procedures for production of high-quality photoreceptor precursor cells that are compatible with current good manufacturing practices. This system will enable clinical grade production of iPSCs for autologous retinal cell replacement.
Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Retina , Técnicas de Cultura de Células , Diferenciação Celular , Células FotorreceptorasRESUMO
Activation of the alternative complement pathway is an initiating event in the pathology of age-related macular degeneration (AMD). Unchecked complement activation leads to the formation of a pro-lytic pore, the membrane attack complex (MAC). MAC deposition is observed on the choriocapillaris of AMD patients and likely causes lysis of choroidal endothelial cells (CECs). Complement factor H (FH, encoded by the gene CFH) is an inhibitor of complement. Both loss of function of FH and reduced choroidal levels of FH have been reported in AMD. It is plausible that reduced local FH availability promotes MAC deposition on CECs. FH is produced primarily in the liver; however, cells including the retinal pigment epithelium can produce FH locally. We hypothesized that CECs produce FH locally to protect against MAC deposition. We aimed to investigate the effect of reduced FH levels in the choroid to determine whether increasing local FH could protect CECs from MAC deposition. We demonstrated that siRNA knockdown of FH (CFH) in human immortalized CECs results in increased MAC deposition. We generated AMD iPSC-derived CECs and found that overexpression of FH protects against MAC deposition. These results suggest that local CEC-produced FH protects against MAC deposition, and that increasing local FH protein may be beneficial in limiting MAC deposition in AMD. © 2022 The Pathological Society of Great Britain and Ireland.
Assuntos
Fator H do Complemento , Degeneração Macular , Corioide/metabolismo , Fator H do Complemento/genética , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/farmacologia , Células Endoteliais/metabolismo , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/metabolismoRESUMO
By combining next generation whole exome sequencing and induced pluripotent stem cell (iPSC) technology we found that an Alu repeat inserted in exon 9 of the MAK gene results in a loss of normal MAK transcript and development of human autosomal recessive retinitis pigmentosa (RP). Although a relatively rare cause of disease in the general population, the MAK variant is enriched in individuals of Jewish ancestry. In this population, 1 in 55 individuals are carriers and one third of all cases of recessive RP is caused by this gene. The purpose of this study was to determine if a viral gene augmentation strategy could be used to safely restore functional MAK protein as a step toward a treatment for early stage MAK-associated RP. Patient iPSC-derived photoreceptor precursor cells were generated and transduced with viral vectors containing the MAK transcript. One week after transduction, transcript and protein could be detected via rt-PCR and western blotting respectively. Using patient-derived fibroblast cells and mak knockdown zebra fish we demonstrate that over-expression of the retinal MAK transgene restored the cells ability to regulate primary cilia length. In addition, the visual defect in mak knockdown zebrafish was mitigated via treatment with the retinal MAK transgene. There was no evidence of local or systemic toxicity at 1-month or 3-months following subretinal delivery of clinical grade vector into wild type rats. The findings reported here will help pave the way for initiation of a phase 1 clinical trial for the treatment of patients with MAK-associated RP.
Assuntos
Retinose Pigmentar , Peixe-Zebra , Animais , Éxons , Terapia Genética , Humanos , Mutação , Ratos , Retina , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Peixe-Zebra/genéticaRESUMO
Retinitis pigmentosa (RP) is an inherited retinal degenerative disease with severe vision impairment leading to blindness. About 10-15% of RP cases are caused by mutations in the RPGR gene, with RPGR mutations accounting for 70% of X-linked RP cases. The mechanism by which RPGR mutations cause photoreceptor cell dysfunction is not well understood. In this study, we show that the two isoforms of RPGR (RPGR1-19 and RPGRORF15) interact with endogenous PDE6D, INPP5E, and RPGRIP1L. The RPGR1-19 isoform contains two PDE6D binding sites with the C-terminal prenylation site being the predominant PDE6D binding site. The C terminus of RPGR1-19 that contains the prenylation site regulates its interaction with PDE6D, INPP5E, and RPGRIP1L. Only the RPGR1-19 isoform localizes to cilia in cultured RPE1 cells. Missense variations found in RPGR patients disrupt the interaction between RPGR isoforms and their endogenous interactors INPP5E, PDE6D, and RPGRIP1L. We evaluated a RPGR missense variation (M58K) found in a family with X-linked retinitis pigmentosa (XLRP) and show that this missense variation disrupts the interaction of RPGR isoforms with their endogenous interactors. The M58K variation also disrupts the ciliary localization of the RPGR1-19 isoform. Using this assay, we also show that some of the RPGR missense variants reported in the literature might not actually be disease causing. Our data establishes an in vitro assay that can be used to validate the potential pathogenicity of RPGR missense variants.
Assuntos
Proteínas do Olho/genética , Mutação de Sentido Incorreto/genética , Proteínas Nucleares/genética , Domínios e Motivos de Interação entre Proteínas/genética , Retinose Pigmentar/genética , Animais , Sítios de Ligação/genética , Linhagem Celular , Cílios/genética , Células HEK293 , Humanos , Camundongos , Isoformas de Proteínas/genéticaRESUMO
The human retinal pigment epithelium (RPE) and choroid are complex tissues that provide crucial support to the retina. Disease affecting either of these supportive tissues can lead to irreversible blindness in the setting of age-related macular degeneration. In this study, single-cell RNA sequencing was performed on macular and peripheral regions of RPE-choroid from 7 human donor eyes in 2 independent experiments. In the first experiment, total RPE/choroid preparations were evaluated and expression profiles specific to RPE and major choroidal cell populations were identified. As choroidal endothelial cells represent a minority of the total RPE/choroidal cell population but are strongly implicated in age-related macular degeneration (AMD) pathogenesis, a second single-cell RNA-sequencing experiment was performed using endothelial cells enriched by magnetic separation. In this second study, we identified gene expression signatures along the choroidal vascular tree, classifying the transcriptome of human choriocapillaris, arterial, and venous endothelial cells. We found that the choriocapillaris highly and specifically expresses the regulator of cell cycle gene (RGCC), a gene that responds to complement activation and induces apoptosis in endothelial cells. In addition, RGCC was the most up-regulated choriocapillaris gene in a donor diagnosed with AMD. These results provide a characterization of the human RPE and choriocapillaris transcriptome, offering potential insight into the mechanisms of choriocapillaris response to complement injury and choroidal vascular disease in age-related macular degeneration.
Assuntos
Corioide/metabolismo , Degeneração Macular/metabolismo , Retina/metabolismo , Transcriptoma , Corioide/citologia , Corioide/patologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Humanos , Retina/citologia , Retina/patologia , Análise de Célula ÚnicaRESUMO
Emerging treatment strategies for retinal degeneration involve replacing lost photoreceptors using supportive scaffolds to ensure cells survive the implantation process. While many design aspects of these scaffolds, including material chemistry and microstructural cues, have been studied in depth, a full set of design constraints has yet to be established. For example, while known to be important in other tissues and systems, the influence of mechanical properties on surgical handling has not been quantified. In this study, photocrosslinked poly(ethylene glycol) dimethacrylate (PEGDMA) was used as a model polymer to study the effects of scaffold modulus (stiffness) on surgical handling, independent of material chemistry. This was achieved by modulating the molecular weight and concentrations of the PEGDMA in various prepolymer solutions. Scaffold modulus of each formulation was measured using photo-rheology, which enabled the collection of real-time polymerization data. In addition to measuring scaffold mechanical properties, this approach gave insight on polymerization kinetics, which were used to determine the polymerization time required for each sample. Scaffold handling characteristics were qualitatively evaluated using both in vitro and ex vivo trials that mimicked the surgical procedure. In these trials, scaffolds with shear moduli above 35 kPa performed satisfactorily, while those below this limit performed poorly. In other words, scaffolds below this modulus were too fragile for reliable transplantation. To better compare these results with literature values, the compressive modulus was measured for select samples, with the lower shear modulus limit corresponding to roughly 115 kPa compressive modulus. While an upper mechanical property limit was not readily apparent from these results, there was increased variability in surgical handling performance in samples with shear moduli above 800 kPa. Overall, the knowledge presented here provides important groundwork for future studies designed to examine additional retinal scaffold considerations, including the effect of scaffold mechanical properties on retinal progenitor cell fate.
Assuntos
Metacrilatos/química , Polietilenoglicóis/química , Retina/citologia , Degeneração Retiniana/cirurgia , Transplante de Células-Tronco , Células-Tronco/citologia , Alicerces Teciduais/química , Animais , Reagentes de Ligações Cruzadas , Módulo de Elasticidade/fisiologia , Degeneração Retiniana/fisiopatologia , SuínosRESUMO
Early age-related macular degeneration (AMD) is characterized by degeneration of the choriocapillaris, the vascular supply of retinal photoreceptor cells. We assessed vascular loss during disease progression in the choriocapillaris and larger vessels in the deeper choroid. Human donor maculae from controls (n = 99), early AMD (n = 35), or clinically diagnosed with geographic atrophy (GA; n = 9, collected from outside the zone of retinal pigment epithelium degeneration) were evaluated using Ulex europaeus agglutinin-I labeling to discriminate between vessels with intact endothelial cells and ghost vessels. Morphometric analyses of choriocapillaris density (cross-sectional area of capillary lumens divided by length) and of vascular lumen/stroma ratio in the outer choroid were performed. Choriocapillaris loss was observed in early AMD (Bonferroni-corrected P = 0.024) with greater loss in GA (Bonferroni-corrected P < 10-9), even in areas of intact retinal pigment epithelium. In contrast, changes in lumen/stroma ratio in the outer choroid were not found to differ between controls and AMD or GA eyes (P > 0.05), suggesting choriocapillaris changes are more prevalent in AMD than those in the outer choroid. In addition, vascular endothelial growth factor-A levels were negatively correlated with choriocapillaris vascular density. These findings support the concept that choroidal vascular degeneration, predominantly in the microvasculature, contributes to dry AMD progression. Addressing capillary loss in AMD remains an important translational target.
Assuntos
Corioide , Atrofia Geográfica , Epitélio Pigmentado da Retina , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Corioide/irrigação sanguínea , Corioide/metabolismo , Corioide/patologia , Feminino , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologia , Humanos , Masculino , Epitélio Pigmentado da Retina/irrigação sanguínea , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologiaRESUMO
The human choroidal vasculature is subject to age-related structural and gene expression changes implicated in age-related macular degeneration (AMD). In this study, we performed both bulk and single-cell RNA sequencing on infant (n = 4 for bulk experiments, n = 2 for single-cell experiments) and adult (n = 13 for bulk experiments, n = 6 for single-cell experiments) human donors to characterize how choroidal gene expression changes with age. Differential expression analysis revealed that aged choroidal samples were enriched in genes encoding pro-inflammatory transcription factors and leukocyte transendothelial cell migration adhesion proteins. Such genes were observed to be differentially expressed specifically within choroidal endothelial cells at the single-cell level. Immunohistochemistry experiments support transcriptional findings that CD34 is elevated in infant choriocapillaris endothelial cells while ICAM-1 is enriched in adults. These results suggest several potential drivers of the pro-inflammatory vascular phenotype observed with advancing age.
Assuntos
Envelhecimento/genética , Corioide/irrigação sanguínea , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/genética , Degeneração Macular/genética , Análise de Sequência de RNA , Análise de Célula Única , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Inflamação/metabolismo , Degeneração Macular/metabolismo , Masculino , Pessoa de Meia-Idade , FenótipoRESUMO
Inherited retinal degenerative disorders such as retinitis pigmentosa and Usher syndrome are characterized by progressive death of photoreceptor cells. To restore vision to patients blinded by these diseases, a stem cell-based photoreceptor cell replacement strategy will likely be required. Although retinal stem cell differentiation protocols suitable for generating photoreceptor cells exist, they often yield a rather heterogenous mixture of cell types. To enrich the donor cell population for one or a few cell types, scientists have traditionally relied upon the use of antibody-based selection approaches. However, these strategies are quite labor intensive and require animal derived reagents and equipment that are not well suited to current good manufacturing practices (cGMP). The purpose of this study was to develop and evaluate a microfluidic cell sorting device capable of exploiting the physical and mechanical differences between retinal cell types to enrich specific donor cell populations such as Retinal Pigment Epithelial (RPE) cells and photoreceptor cells. Using this device, we were able to separate a mixture of RPE and iPSC-derived photoreceptor precursor cell lines into two substantially enriched fractions. The enrichment factor of the RPE fraction was 2 and that of the photoreceptor precursor cell fraction was 2.7. Similarly, when human retina, obtained from 3 independent donors, was dissociated and passed through the sorting device, the heterogeneous mixture could be reliably sorted into RPE and photoreceptor cell rich fractions. In summary, microfluidic cell sorting is a promising approach for antibody free enrichment of retinal cell populations.
Assuntos
Microfluídica/métodos , Células Fotorreceptoras/patologia , Degeneração Retiniana/diagnóstico , Epitélio Pigmentado da Retina/patologia , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Microscopia de Força Atômica , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismoRESUMO
Single-cell RNA sequencing has revolutionized ocular gene expression studies. This technology has enabled researchers to identify expression signatures for rare cell types and characterize how gene expression changes across biological conditions, such as topographic region or disease status. However, sharing single-cell RNA sequencing results remains a major obstacle, particular for individuals without a computational background. To address these limitations, we developed Spectacle, an interactive web-based resource for exploring previously published single-cell RNA sequencing data from ocular studies. Spectacle is powered by a locally developed R package, cellcuratoR, which utilizes the Shiny framework in R to generate interactive visualizations for single-cell expression data. Spectacle contains five pre-processed ocular single-cell RNA sequencing data sets and is accessible via the web at OcularGeneExpression.org/singlecell. With Spectacle, users can interactively identify which cell types express a gene of interest, detect transcriptomic subpopulations within a cell type, and perform highly flexible differential expression analyses. The freely-available Spectacle system reduces the bioinformatic barrier for interacting with rich single-cell RNA sequencing studies from ocular tissues, making it easy to quickly identify cell types that express a gene of interest.