Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(34): e2220269120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579172

RESUMO

The vascular endothelium from individual organs is functionally specialized, and it displays a unique set of accessible molecular targets. These serve as endothelial cell receptors to affinity ligands. To date, all identified vascular receptors have been proteins. Here, we show that an endothelial lung-homing peptide (CGSPGWVRC) interacts with C16-ceramide, a bioactive sphingolipid that mediates several biological functions. Upon binding to cell surfaces, CGSPGWVRC triggers ceramide-rich platform formation, activates acid sphingomyelinase and ceramide production, without the associated downstream apoptotic signaling. We also show that the lung selectivity of CGSPGWVRC homing peptide is dependent on ceramide production in vivo. Finally, we demonstrate two potential applications for this lipid vascular targeting system: i) as a bioinorganic hydrogel for pulmonary imaging and ii) as a ligand-directed lung immunization tool against COVID-19. Thus, C16-ceramide is a unique example of a lipid-based receptor system in the lung vascular endothelium targeted in vivo by circulating ligands such as CGSPGWVRC.


Assuntos
COVID-19 , Humanos , Ligantes , COVID-19/metabolismo , Ceramidas/metabolismo , Pulmão/metabolismo , Endotélio Vascular/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Transporte/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38568479

RESUMO

RATIONALE: Idiopathic Pulmonary Arterial Hypertension (IPAH) is characterized by extensive pulmonary vascular remodeling due to plexiform and obliterative lesions, media hypertrophy, inflammatory cell infiltration, and alterations of the adventitia. OBJECTIVE: Test the hypothesis that microscopic IPAH vascular lesions express unique molecular profiles, which collectively are different from control pulmonary arteries. METHODS: We used digital spatial transcriptomics to profile the genome-wide differential transcriptomic signature of key pathological lesions (plexiform, obliterative, intima+media hypertrophy, and adventitia) in IPAH lungs (n= 11) and compared these data to the intima+media and adventitia of control pulmonary artery (n=5). RESULTS: We detected 8273 transcripts in the IPAH lesions and control lung pulmonary arteries. Plexiform lesions and IPAH adventitia exhibited the greatest number of differentially expressed genes when compared with intima-media hypertrophy and obliterative lesions. Plexiform lesions in IPAH showed enrichment for (i) genes associated with TGFß-signaling and (ii) mutated genes affecting the extracellular matrix and endothelial-mesenchymal transformation. Plexiform lesions and IPAH adventitia showed upregulation of genes involved in immune and interferon signaling, coagulation, and complement pathways. Cellular deconvolution indicated variability in the number of vascular and inflammatory cells between IPAH lesions, which underlies the differential transcript profiling. CONCLUSIONS: IPAH lesions express unique molecular transcript profiles enriched for pathways involving pathogenetic pathways, including genetic disease drivers, innate and acquired immunity, hypoxia sensing, and angiogenesis signaling. These data provide a rich molecular-structural framework in IPAH vascular lesions that inform novel biomarkers and therapeutic targets in this highly morbid disease.

3.
FASEB J ; 37(12): e23316, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37983890

RESUMO

Alveolar inflammation is a hallmark of acute lung injury (ALI), and its clinical correlate is acute respiratory distress syndrome-and it is as a result of interactions between alveolar type II cells (ATII) and alveolar macrophages (AM). In the setting of acute injury, the microenvironment of the intra-alveolar space is determined in part by metabolites and cytokines and is known to shape the AM phenotype. In response to ALI, increased glycolysis is observed in AT II cells, mediated by the transcription factor hypoxia-inducible factor (HIF) 1α, which has been shown to decrease inflammation. We hypothesized that in acute lung injury, lactate, the end product of glycolysis, produced by ATII cells shifts AMs toward an anti-inflammatory phenotype, thus mitigating ALI. We found that local intratracheal delivery of lactate improved ALI in two different mouse models. Lactate shifted cytokine expression of murine AMs toward increased IL-10, while decreasing IL-1 and IL-6 expression. Mice with ATII-specific deletion of Hif1a and mice treated with an inhibitor of lactate dehydrogenase displayed exacerbated ALI and increased inflammation with decreased levels of lactate in the bronchoalveolar lavage fluid; however, all those parameters improved with intratracheal lactate. When exposed to LPS (to recapitulate an inflammatory stimulus as it occurs in ALI), human primary AMs co-cultured with alveolar epithelial cells had reduced inflammatory responses. Taken together, these studies reveal an innate protective pathway, in which lactate produced by ATII cells shifts AMs toward an anti-inflammatory phenotype and dampens excessive inflammation in ALI.


Assuntos
Lesão Pulmonar Aguda , Macrófagos Alveolares , Camundongos , Humanos , Animais , Macrófagos Alveolares/metabolismo , Células Epiteliais Alveolares/metabolismo , Ácido Láctico/metabolismo , Lesão Pulmonar Aguda/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo
4.
Am J Respir Cell Mol Biol ; 69(5): 570-583, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37343939

RESUMO

Pulmonary hypertension (PH) is a heterogeneous and life-threatening cardiopulmonary disorder in which mitochondrial dysfunction is believed to drive pathogenesis, although the underlying mechanisms remain unclear. To determine if abnormal SIRT3 (sirtuin 3) activity is related to mitochondrial dysfunction in adventitial fibroblasts from patients with idiopathic pulmonary arterial hypertension (IPAH) and hypoxic PH calves (PH-Fibs) and whether SIRT3 could be a potential therapeutic target to improve mitochondrial function, SIRT3 concentrations in control fibroblasts, PH-Fibs, and lung tissues were determined using quantitative real-time PCR and western blot. SIRT3 deacetylase activity in cells and lung tissues was determined using western blot, immunohistochemistry staining, and immunoprecipitation. Glycolysis and mitochondrial function in fibroblasts were measured using respiratory analysis and fluorescence-lifetime imaging microscopy. The effects of restoring SIRT3 activity (by overexpression of SIRT3 with plasmid, activation SIRT3 with honokiol, and supplementation with the SIRT3 cofactor nicotinamide adenine dinucleotide [NAD+]) on mitochondrial protein acetylation, mitochondrial function, cell proliferation, and gene expression in PH-Fibs were also investigated. We found that SIRT3 concentrations were decreased in PH-Fibs and PH lung tissues, and its cofactor, NAD+, was also decreased in PH-Fibs. Increased acetylation in overall mitochondrial proteins and SIRT3-specific targets (MPC1 [mitochondrial pyruvate carrier 1] and MnSOD2 [mitochondrial superoxide dismutase]), as well as decreased MnSOD2 activity, was identified in PH-Fibs and PH lung tissues. Normalization of SIRT3 activity, by increasing its expression with plasmid or with honokiol and supplementation with its cofactor NAD+, reduced mitochondrial protein acetylation, improved mitochondrial function, inhibited proliferation, and induced apoptosis in PH-Fibs. Thus, our study demonstrated that restoration of SIRT3 activity in PH-Fibs can reduce mitochondrial protein acetylation and restore mitochondrial function and PH-Fib phenotype in PH.


Assuntos
Hipertensão Pulmonar , Sirtuína 3 , Humanos , Animais , Bovinos , Hipertensão Pulmonar/patologia , Sirtuína 3/genética , Sirtuína 3/metabolismo , NAD/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fibroblastos/metabolismo
5.
Am J Respir Cell Mol Biol ; 69(1): 73-86, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36944195

RESUMO

Hypoxia-inducible factor (HIF) has received much attention as a potential pulmonary hypertension (PH) treatment target because inhibition of HIF reduces the severity of established PH in rodent models. However, the limitations of small-animal models of PH in predicting the therapeutic effects of pharmacologic interventions in humans PH are well known. Therefore, we sought to interrogate the role of HIFs in driving the activated phenotype of PH cells from human and bovine vessels. We first established that pulmonary arteries (PAs) from human and bovine PH lungs exhibit markedly increased expression of direct HIF target genes (CA9, GLUT1, and NDRG1), as well as cytokines/chemokines (CCL2, CSF2, CXCL12, and IL6), growth factors (FGF1, FGF2, PDGFb, and TGFA), and apoptosis-resistance genes (BCL2, BCL2L1, and BIRC5). The expression of the genes found in the intact PAs was determined in endothelial cells, smooth muscle cells, and fibroblasts cultured from the PAs. The data showed that human and bovine pulmonary vascular fibroblasts from patients or animals with PH (termed PH-Fibs) were the cell type that exhibited the highest level and the most significant increases in the expression of cytokines/chemokines and growth factors. In addition, we found that human, but not bovine, PH-Fibs exhibit consistent misregulation of HIFα protein stability, reduced HIF1α protein hydroxylation, and increased expression of HIF target genes even in cells grown under normoxic conditions. However, whereas HIF inhibition reduced the expression of direct HIF target genes, it had no impact on other "persistently activated" genes. Thus, our study indicated that HIF inhibition alone is not sufficient to reverse the persistently activated phenotype of human and bovine PH-Fibs.


Assuntos
Hipertensão Pulmonar , Animais , Humanos , Hipertensão Pulmonar/metabolismo , Células Endoteliais/metabolismo , Fenótipo , Citocinas/metabolismo , Artéria Pulmonar/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Hipóxia/complicações , Fibroblastos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células Cultivadas
6.
Clin Sci (Lond) ; 137(8): 617-631, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37014925

RESUMO

BACKGROUND: Pulmonary hypertension (PH) can occur as a complication of schistosomiasis. In humans, schistosomiasis-PH persists despite antihelminthic therapy and parasite eradication. We hypothesized that persistent disease arises as a consequence of exposure repetition. METHODS: Following intraperitoneal sensitization, mice were experimentally exposed to Schistosoma eggs by intravenous injection, either once or three times repeatedly. The phenotype was characterized by right heart catheterization and tissue analysis. RESULTS: Following intraperitoneal sensitization, a single intravenous Schistosoma egg exposure resulted in a PH phenotype that peaked at 7-14 days, followed by spontaneous resolution. Three sequential exposures resulted in a persistent PH phenotype. Inflammatory cytokines were not significantly different between mice exposed to one or three egg doses, but there was an increase in perivascular fibrosis in those who received three egg doses. Significant perivascular fibrosis was also observed in autopsy specimens from patients who died of this condition. CONCLUSIONS: Repeatedly exposing mice to schistosomiasis causes a persistent PH phenotype, accompanied by perivascular fibrosis. Perivascular fibrosis may contribute to the persistent schistosomiasis-PH observed in humans with this disease.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar , Esquistossomose , Humanos , Animais , Camundongos , Hipertensão Pulmonar/etiologia , Fibrose Pulmonar/complicações , Schistosoma mansoni , Pulmão/patologia , Esquistossomose/complicações , Esquistossomose/patologia , Fibrose
7.
Am J Respir Cell Mol Biol ; 66(2): e1-e14, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35103557

RESUMO

Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.


Assuntos
Lesão Pulmonar Aguda/patologia , Inflamação/fisiopatologia , Relatório de Pesquisa/tendências , Lesão Pulmonar Aguda/imunologia , Animais
8.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L355-L371, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35763400

RESUMO

Dysregulated metabolism characterizes both animal and human forms of pulmonary hypertension (PH). Enzymes involved in fatty acid metabolism have previously not been assessed in human pulmonary arteries affected by pulmonary arterial hypertension (PAH), and how inhibition of fatty acid oxidation (FAO) may attenuate PH remains unclear. Fatty acid metabolism gene transcription was quantified in laser-dissected pulmonary arteries from 10 explanted lungs with advanced PAH (5 idiopathic, 5 associated with systemic sclerosis), and 5 donors without lung diseases. Effects of oxfenicine, a FAO inhibitor, on female Sugen 5416-chronic hypoxia (SuHx) rats were studied in vivo using right heart catheterization, and ex vivo using perfused lungs and pulmonary artery ring segments. The impact of pharmacologic (oxfenicine) and genetic (carnitine palmitoyltransferase 1a heterozygosity) FAO suppression was additionally probed in mouse models of Schistosoma and hypoxia-induced PH. Potential mechanisms underlying FAO-induced PH pathogenesis were examined by quantifying ATP and mitochondrial mass in oxfenicine-treated SuHx pulmonary arterial cells, and by assessing pulmonary arterial macrophage infiltration with immunohistochemistry. We found upregulated pulmonary arterial transcription of 26 and 13 FAO genes in idiopathic and systemic sclerosis-associated PAH, respectively. In addition to promoting de-remodeling of pulmonary arteries in SuHx rats, oxfenicine attenuated endothelin-1-induced vasoconstriction. FAO inhibition also conferred modest benefit in the two mouse models of PH. Oxfenicine increased mitochondrial mass in cultured rat pulmonary arterial cells, and decreased the density of perivascular macrophage infiltration in pulmonary arteries of treated SuHx rats. In summary, FAO inhibition attenuated experimental PH, and may be beneficial in human PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Escleroderma Sistêmico , Animais , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Feminino , Humanos , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Camundongos , Artéria Pulmonar/metabolismo , Ratos , Escleroderma Sistêmico/patologia , Remodelação Vascular
9.
Eur Respir J ; 60(6)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35680144

RESUMO

BACKGROUND: Signalling through platelet-derived growth factor receptor (PDGFR), colony-stimulating factor 1 receptor (CSF1R) and mast/stem cell growth factor receptor kit (c-KIT) plays a critical role in pulmonary arterial hypertension (PAH). We examined the preclinical efficacy of inhaled seralutinib, a unique small-molecule PDGFR/CSF1R/c-KIT kinase inhibitor in clinical development for PAH, in comparison to a proof-of-concept kinase inhibitor, imatinib. METHODS: Seralutinib and imatinib potency and selectivity were compared. Inhaled seralutinib pharmacokinetics/pharmacodynamics were studied in healthy rats. Efficacy was evaluated in two rat models of PAH: SU5416/Hypoxia (SU5416/H) and monocrotaline pneumonectomy (MCTPN). Effects on inflammatory/cytokine signalling were examined. PDGFR, CSF1R and c-KIT immunohistochemistry in rat and human PAH lung samples and microRNA (miRNA) analysis in the SU5416/H model were performed. RESULTS: Seralutinib potently inhibited PDGFRα/ß, CSF1R and c-KIT. Inhaled seralutinib demonstrated dose-dependent inhibition of lung PDGFR and c-KIT signalling and increased bone morphogenetic protein receptor type 2 (BMPR2). Seralutinib improved cardiopulmonary haemodynamic parameters and reduced small pulmonary artery muscularisation and right ventricle hypertrophy in both models. In the SU5416/H model, seralutinib improved cardiopulmonary haemodynamic parameters, restored lung BMPR2 protein levels and decreased N-terminal pro-brain natriuretic peptide (NT-proBNP), more than imatinib. Quantitative immunohistochemistry in human lung PAH samples demonstrated increased PDGFR, CSF1R and c-KIT. miRNA analysis revealed candidates that could mediate seralutinib effects on BMPR2. CONCLUSIONS: Inhaled seralutinib was an effective treatment of severe PAH in two animal models, with improved cardiopulmonary haemodynamic parameters, a reduction in NT-proBNP, reverse remodelling of pulmonary vascular pathology and improvement in inflammatory biomarkers. Seralutinib showed greater efficacy compared to imatinib in a preclinical study.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Hipertensão Arterial Pulmonar , Ratos , Humanos , Animais , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/metabolismo , Mesilato de Imatinib/uso terapêutico , Monocrotalina , Hipertensão Pulmonar Primária Familiar , Artéria Pulmonar , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Hipóxia , MicroRNAs/metabolismo , Modelos Animais de Doenças
10.
Eur Respir J ; 59(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34446463

RESUMO

BACKGROUND: Successful recovery from acute lung injury requires inhibition of neutrophil influx and clearance of apoptotic neutrophils. However, the mechanisms underlying recovery remain unclear. We investigated the ameliorative effects of vascular endothelial growth factor (VEGF)-C/VEGF receptor 3 (VEGFR-3) signalling in macrophages in lipopolysaccharide (LPS)-induced lung injury. METHODS: LPS was intranasally injected into wild-type and transgenic mice. Gain and loss of VEGF-C/VEGFR-3 signalling function experiments employed adenovirus-mediated intranasal delivery of VEGF-C (Ad-VEGF-C vector) and soluble VEGFR-3 (sVEGFR-3) or anti-VEGFR-3 blocking antibodies and mice with a deletion of VEGFR-3 in myeloid cells. RESULTS: The early phase of lung injury was significantly alleviated by the overexpression of VEGF-C with increased levels of bronchoalveolar lavage (BAL) fluid interleukin-10 (IL-10), but worsened in the later phase by VEGFR-3 inhibition upon administration of Ad-sVEGFR-3 vector. Injection of anti-VEGFR-3 antibodies to mice in the resolution phase inhibited recovery from lung injury. The VEGFR-3-deleted mice had a shorter survival time than littermates and more severe lung injury in the resolution phase. Alveolar macrophages in the resolution phase digested most of the extrinsic apoptotic neutrophils and VEGF-C/VEGFR-3 signalling increased efferocytosis via upregulation of integrin αv in the macrophages. We also found that incubation with BAL fluid from acute respiratory distress syndrome (ARDS) patients, but not from controls, decreased VEGFR-3 expression and the efficiency of IL-10 expression and efferocytosis in human monocyte-derived macrophages. CONCLUSIONS: VEGF-C/VEGFR-3 signalling in macrophages ameliorates experimental lung injury. This mechanism may also provide an explanation for ARDS resolution.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/metabolismo , Animais , Humanos , Interleucina-10/efeitos adversos , Interleucina-10/metabolismo , Lipopolissacarídeos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
FASEB J ; 35(4): e21468, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33687752

RESUMO

Acute lung injury (ALI) is an inflammatory lung disease, which manifests itself in patients as acute respiratory distress syndrome (ARDS). Previous studies have implicated alveolar-epithelial succinate in ALI protection. Therefore, we hypothesized that targeting alveolar succinate dehydrogenase SDH A would result in elevated succinate levels and concomitant lung protection. Wild-type (WT) mice or transgenic mice with targeted alveolar-epithelial Sdha or hypoxia-inducible transcription factor Hif1a deletion were exposed to ALI induced by mechanical ventilation. Succinate metabolism was assessed in alveolar-epithelial via mass spectrometry as well as redox measurements and evaluation of lung injury. In WT mice, ALI induced by mechanical ventilation decreased SDHA activity and increased succinate in alveolar-epithelial. In vitro, cell-permeable succinate decreased epithelial inflammation during stretch injury. Mice with inducible alveolar-epithelial Sdha deletion (Sdhaloxp/loxp SPC-CreER mice) revealed reduced lung inflammation, improved alveolar barrier function, and attenuated histologic injury. Consistent with a functional role of succinate to stabilize HIF, Sdhaloxp/loxp SPC-CreER experienced enhanced Hif1a levels during hypoxia or ALI. Conversely, Hif1aloxp/loxp SPC-CreER showed increased inflammation with ALI induced by mechanical ventilation. Finally, wild-type mice treated with intra-tracheal dimethlysuccinate were protected during ALI. These data suggest that targeting alveolar-epithelial SDHA dampens ALI via succinate-mediated stabilization of HIF1A. Translational extensions of our studies implicate succinate treatment in attenuating alveolar inflammation in patients suffering from ARDS.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Succinato Desidrogenase/metabolismo , Animais , Humanos , Inflamação/metabolismo , Camundongos Transgênicos , Alvéolos Pulmonares/metabolismo
12.
Am J Respir Cell Mol Biol ; 64(6): 669-676, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33406369

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic interstitial lung disease with underlying mechanisms that have been primarily investigated in mice after intratracheal instillation of a single dose of bleomycin. However, the model has significant limitations, including transient fibrosis that spontaneously resolves and its failure to fully recapitulate the epithelial remodeling in the lungs of patients with IPF. Thus, there remains an unmet need for a preclinical model with features that more closely resemble the human disease. Repetitive intratracheal instillation of bleomycin has previously been shown to recapitulate some of these features, but the instillation procedure is complex, and the long-term consequences on epithelial remodeling and fibrosis persistence and progression remain poorly understood. Here, we developed a simplified repetitive bleomycin instillation strategy consisting of three bi-weekly instillations that leads to persistent and progressive pulmonary fibrosis. Lung histology demonstrates increased collagen deposition, fibroblast accumulation, loss of type I and type II alveolar epithelial cells within fibrotic areas, bronchiolization of the lung parenchyma with CCSP+ cells, remodeling of the distal lung into cysts reminiscent of simple honeycombing, and accumulation of hyperplastic transitional KRT8+ epithelial cells. Micro-computed tomographic imaging demonstrated significant traction bronchiectasis and subpleural fibrosis. Thus, the simplified repetitive bleomycin instillation strategy leads to progressive fibrosis and recapitulates the histological and radiographic characteristics of IPF. Compared with the single bleomycin instillation model, we suggest that the simplified repetitive instillation model may be better suited to address mechanistic questions about IPF pathogenesis and preclinical studies of antifibrotic drug candidates.


Assuntos
Células Epiteliais/patologia , Fibrose Pulmonar Idiopática/patologia , Animais , Bleomicina , Progressão da Doença , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Imageamento Tridimensional , Masculino , Camundongos Endogâmicos C57BL , Microtomografia por Raio-X
13.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L675-L685, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346780

RESUMO

Humans and animals with pulmonary hypertension (PH) show right ventricular (RV) capillary growth, which positively correlates with overall RV hypertrophy. However, molecular drivers of RV vascular augmentation in PH are unknown. Prolyl hydroxylase (PHD2) is a regulator of hypoxia-inducible factors (HIFs), which transcriptionally activates several proangiogenic genes, including the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We hypothesized that a signaling axis of PHD2-HIF1α-PFKFB3 contributes to adaptive coupling between the RV vasculature and tissue volume to maintain appropriate vascular density in PH. We used design-based stereology to analyze endothelial cell (EC) proliferation and the absolute length of the vascular network in the RV free wall, relative to the tissue volume in mice challenged with hypoxic PH. We observed increased RV EC proliferation starting after 6 h of hypoxia challenge. Using parabiotic mice, we found no evidence for a contribution of circulating EC precursors to the RV vascular network. Mice with transgenic deletion or pharmacological inhibition of PHD2, HIF1α, or PFKFB3 all had evidence of impaired RV vascular adaptation following hypoxia PH challenge. PHD2-HIF1α-PFKFB3 contributes to structural coupling between the RV vascular length and tissue volume in hypoxic mice, consistent with homeostatic mechanisms that maintain appropriate vascular density. Activating this pathway could help augment the RV vasculature and preserve RV substrate delivery in PH, as an approach to promote RV function.


Assuntos
Vasos Coronários/crescimento & desenvolvimento , Ventrículos do Coração/patologia , Hipertensão Pulmonar/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Fosfofrutoquinase-2/metabolismo , Anaerobiose/fisiologia , Animais , Células Endoteliais/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia
14.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L413-L421, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264579

RESUMO

Inflammation is central to the pathogenesis of pulmonary vascular remodeling and pulmonary hypertension (PH). Inflammation precedes remodeling in preclinical models, thus supporting the concept that changes in immunity drive remodeling in PH. Platelets are recognized as mediators of inflammation, but whether platelets contribute to hypoxia-driven inflammation has not been studied. We utilized a murine hypoxia model to test the hypothesis that platelets drive hypoxia-induced inflammation. We evaluated male and female 9-wk-old normoxic and hypoxic mice and in selected experiments included hypoxic thrombocytopenic mice. Thrombocytopenic mice were generated with an anti-GP1bα rat IgG antibody. We also performed immunostaining of lung sections from failed donor controls and patients with idiopathic pulmonary arterial hypertension. We found that platelets are increased in the lungs of hypoxic mice and hypoxia induces platelet activation. Platelet depletion prevents hypoxia-driven increases in the proinflammatory chemokines CXCL4 and CCL5 and attenuates hypoxia-induced increase in plasma CSF-2. Pulmonary interstitial macrophages are increased in the lungs of hypoxic mice; this increase is prevented in thrombocytopenic mice. To determine the potential relevance to human disease, lung sections from donors and patients with advanced idiopathic pulmonary arterial hypertension (iPAH) were immunostained for the platelet-specific protein CD41. We observed iPAH lungs had a two-fold increase in CD41, compared with controls. Our data provide evidence that the platelet count is increased in the lungs and activated in mice with hypoxia-induced inflammation and provides rationale for the further study of the potential contribution of platelets to inflammatory mediated vascular remodeling and PH.


Assuntos
Plaquetas/imunologia , Hipóxia/imunologia , Pulmão/imunologia , Ativação Plaquetária/imunologia , Pneumonia/imunologia , Animais , Plaquetas/patologia , Quimiocina CCL5/imunologia , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Hipóxia/patologia , Inflamação/imunologia , Inflamação/patologia , Pulmão/patologia , Masculino , Camundongos , Fator Plaquetário 4/imunologia , Pneumonia/patologia , Trombocitopenia/induzido quimicamente , Trombocitopenia/imunologia , Trombocitopenia/patologia
15.
Am J Respir Crit Care Med ; 201(10): 1209-1217, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32197050

RESUMO

Rationale: Interstitial macrophages (IMs) and airspace macrophages (AMs) play critical roles in lung homeostasis and host defense, and are central to the pathogenesis of a number of lung diseases. However, the absolute numbers of macrophages and the precise anatomic locations they occupy in the healthy human lung have not been quantified.Objectives: To determine the precise number and anatomic location of human pulmonary macrophages in nondiseased lungs and to quantify how this is altered in chronic cigarette smokers.Methods: Whole right upper lobes from 12 human donors without pulmonary disease (6 smokers and 6 nonsmokers) were evaluated using design-based stereology. CD206 (cluster of differentiation 206)-positive/CD43+ AMs and CD206+/CD43- IMs were counted in five distinct anatomical locations using the optical disector probe.Measurements and Main Results: An average of 2.1 × 109 IMs and 1.4 × 109 AMs were estimated per right upper lobe. Of the AMs, 95% were contained in diffusing airspaces and 5% in airways. Of the IMs, 78% were located within the alveolar septa, 14% around small vessels, and 7% around the airways. The local density of IMs was greater in the alveolar septa than in the connective tissue surrounding the airways or vessels. The total number and density of IMs was 36% to 56% greater in the lungs of cigarette smokers versus nonsmokers.Conclusions: The precise locations occupied by pulmonary macrophages were defined in nondiseased human lungs from smokers and nonsmokers. IM density was greatest in the alveolar septa. Lungs from chronic smokers had increased IM numbers and overall density, supporting a role for IMs in smoking-related disease.


Assuntos
Fumar Cigarros/patologia , Pulmão/patologia , Macrófagos Alveolares/patologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Contagem de Células , Feminino , Humanos , Imuno-Histoquímica , Lectinas Tipo C/metabolismo , Leucossialina/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Pessoa de Meia-Idade , Dispositivos Ópticos , Receptores de Superfície Celular/metabolismo , Doadores de Tecidos
16.
Am J Respir Crit Care Med ; 202(7): 983-995, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32515984

RESUMO

Rationale: Endothelial injury may provoke emphysema, but molecular pathways of disease development require further discernment. Emphysematous lungs exhibit decreased expression of HIF-2α (hypoxia-inducible factor-2α)-regulated genes, and tobacco smoke decreases pulmonary HIF-2α concentrations. These findings suggest that decreased HIF-2α expression is important in the development of emphysema.Objectives: The objective of this study was to evaluate the roles of endothelial-cell (EC) HIF-2α in the pathogenesis of emphysema in mice.Methods: Mouse lungs were examined for emphysema after either the loss or the overexpression of EC Hif-2α. In addition, SU5416, a VEGFR2 inhibitor, was used to induce emphysema. Lungs were evaluated for HGF (hepatocyte growth factor), a protein involved in alveolar development and homeostasis. Lungs from patients with emphysema were measured for endothelial HIF-2α expression.Measurements and Main Results: EC Hif-2α deletion resulted in emphysema in association with fewer ECs and pericytes. After SU5416 exposure, EC Hif-2α-knockout mice developed more severe emphysema, whereas EC Hif-2α-overexpressing mice were protected. EC Hif-2α-knockout mice demonstrated lower levels of HGF. Human emphysema lung samples exhibited reduced EC HIF-2α expression.Conclusions: Here, we demonstrate a unique protective role for pulmonary endothelial HIF-2α and how decreased expression of this endogenous factor causes emphysema; its pivotal protective function is suggested by its ability to overcome VEGF antagonism. HIF-2α may maintain alveolar architecture by promoting vascular survival and associated HGF production. In summary, HIF-2α may be a key endogenous factor that prevents the development of emphysema, and its upregulation has the potential to foster lung health in at-risk patients.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Endoteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Pulmão/metabolismo , Enfisema Pulmonar/genética , Inibidores da Angiogênese/toxicidade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Desferroxamina/farmacologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Indóis/toxicidade , Quelantes de Ferro/farmacologia , Pulmão/irrigação sanguínea , Pulmão/citologia , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Knockout , Microvasos , Pericitos/metabolismo , Circulação Pulmonar , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Pirróis/toxicidade , Fumaça/efeitos adversos
17.
Am J Respir Crit Care Med ; 201(2): 224-239, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31545648

RESUMO

Rationale: Pulmonary hypertension (PH) is a life-threatening cardiopulmonary disorder in which inflammation and immunity have emerged as critical early pathogenic elements. Although proinflammatory processes in PH and pulmonary arterial hypertension (PAH) are the focus of extensive investigation, the initiating mechanisms remain elusive.Objectives: We tested whether activation of the complement cascade is critical in regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and can serve as a prognostic biomarker of outcome in human PAH.Methods: We used immunostaining of lung tissues from experimental PH models and patients with PAH, analyses of genetic murine models lacking specific complement components or circulating immunoglobulins, cultured human pulmonary adventitial fibroblasts, and network medicine analysis of a biomarker risk panel from plasma of patients with PAH.Measurements and Main Results: Pulmonary perivascular-specific activation of the complement cascade was identified as a consistent critical determinant of PH and PAH in experimental animal models and humans. In experimental hypoxic PH, proinflammatory and pro-proliferative responses were dependent on complement (alternative pathway and component 5), and immunoglobulins, particularly IgG, were critical for activation of the complement cascade. We identified Csf2/GM-CSF as a primary complement-dependent inflammatory mediator. Furthermore, using network medicine analysis of a biomarker risk panel from plasma of patients with PAH, we demonstrated that complement signaling can serve as a prognostic factor for clinical outcome in PAH.Conclusions: This study establishes immunoglobulin-driven dysregulated complement activation as a critical pathobiological mechanism regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and demonstrates complement signaling as a critical determinant of clinical outcome in PAH.


Assuntos
Ativação do Complemento/imunologia , Fibroblastos/imunologia , Hipertensão Pulmonar/imunologia , Imunoglobulina G/imunologia , Remodelação Vascular/imunologia , Animais , Complemento C3/imunologia , Complemento C5/imunologia , Fator B do Complemento/imunologia , Via Alternativa do Complemento/imunologia , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Imunoglobulinas/imunologia , Inflamação , Camundongos , Camundongos Knockout , Prognóstico , Hipertensão Arterial Pulmonar/imunologia , Ratos
18.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1131-L1137, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186206

RESUMO

For the past 120 years, there has been a progressive evolution of the pathobiological concepts underlying pulmonary hypertension. Conceptual frameworks, build around the paradigms of excessive vasoconstriction (vs. vasodilation) and, more recently, of the cancer-like hypothesis of pulmonary hypertension, have served to consolidate key discoveries; moreover, they have and continue contributing to innovative advances that have been translated into either successful or potential new therapies. However, those frameworks do not fully address the complexity and challenges facing pulmonary hypertension, particularly those involving the marked heterogeneity of disease presentation and the dynamic changes occurring over time in affected tissues and cells. This is particularly relevant in regards to the molecular pathways of pulmonary hypertension; the ever growing understanding of molecular and cellular pathways requires clarification if they drive distinctive pulmonary vascular lesions in a given lung and disease patients with the same group pulmonary hypertension. Novel methodologies and approaches can start dissecting this key challenge in the field as it is critical to address the key angle of heterogeneity of the disease and reappraisal of disease-modifying therapies.


Assuntos
Hipertensão Pulmonar/patologia , Animais , Humanos , Modelos Biológicos , Análise de Componente Principal
19.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L386-L401, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913656

RESUMO

Pulmonary hypertension (PH) is a multicellular and progressive disease with a high mortality rate. Among many cell types, hematopoietic stem cells (HSCs) are incriminated in the pathogenesis of PH. However, our understanding of the mechanisms that increase HSCs in blood and lungs of hypertensive animals or patients and the role played by HSCs in the pathogenesis of PH remains elusive. Studies suggest that glycolysis is critical for the survival and growth of HSCs. In various cell types from hypertensive lungs of animals and patients, glycolysis and the glucose-6-phosphate dehydrogenase (G6PD) activity are increased. Herein, we demonstrated in mice that chronic hypoxia increased HSCs (CD34+, CD117+, CD133+, CD34+/CD117+, and CD34+/CD133+) in bone marrow and blood and around hypertensive pulmonary arteries in a time-dependent manner. Intriguingly, we found fewer CD133+ cells in the bone marrow of C57BL/6 mice compared with Sv129J mice, and C57BL mice developed less severe chronic hypoxia-elicited PH and heart failure than Sv129J mice. Similarly, the numbers of CD34+ and CD117+ cells in blood of patients with pulmonary arterial hypertension (PAH) were higher (>3-fold) compared with healthy individuals. By allogeneic bone marrow transplantation, we found that GFP+ bone marrow cells infiltrated the lungs and accumulated around the pulmonary arteries in lungs of hypoxic mice, and these cells contributed to increased α-adrenergic receptor-mediated contraction of the pulmonary artery cultured in hypoxia. Inhibition of G6PD activity with (3ß,5α)-3,21-dihydroxypregnan-20-one, a novel and potent G6PD inhibitor, decreased HSCs in bone marrow, blood, and lungs of hypoxic mice and reduced α-agonist-induced contraction of the pulmonary artery and established hypoxia-induced PH. We did not observe CD133+ cells around the pulmonary arteries in the lungs of chronically hypoxic G6PD-deficient mice. Furthermore, knockdown of G6PD and inhibition of G6PD activity: 1) downregulated canonical and noncanonical Wnt and Fzd receptors genes; 2) upregulated Bmpr1a; 3) decreased Cxcl12, and 4) reduced HSC (CD117+ and CD133+) numbers. In all, our findings demonstrate unexpected function for bone marrow-derived HSCs in augmenting α-adrenergic receptor-mediated contraction of pulmonary arteries and remodeling of pulmonary arteries that contribute to increase pulmonary vascular resistance in PAH patients and hypoxic mice and suggest that G6PD, by regulating expression of genes in the WNT and BMPR signaling, contributed to increase and release of HSCs from the bone marrow in response to hypoxic stimuli.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Hipertensão Pulmonar/fisiopatologia , Células-Tronco Pluripotentes/metabolismo , Artéria Pulmonar/fisiopatologia , Receptores Adrenérgicos alfa/metabolismo , Animais , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Contagem de Células , Células Cultivadas , Quimiocina CXCL12/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Coração/fisiopatologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Hipertensão Pulmonar/etiologia , Hipóxia/sangue , Hipóxia/complicações , Hipóxia/genética , Pulmão/patologia , Pulmão/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Pluripotentes/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Via de Sinalização Wnt/genética
20.
Am J Respir Cell Mol Biol ; 60(3): 299-307, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30277795

RESUMO

Pulmonary emphysema is characterized by alveolar wall destruction, and cigarette smoking is the main risk factor in this disease development. S100A8 is a member of the S100 protein family, with an oxidative stress-related and antiinflammatory role. The mechanisms of human alveolar type II (ATII) cell injury contributing to emphysema pathophysiology are not completely understood. We wanted to determine whether S100A8 can protect ATII cells against injury induced by cigarette smoke and this disease development. We used freshly isolated ATII cells from nonsmoking and smoking organ donors, as well as patients with emphysema to determine S100A8 function. S100A8 protein and mRNA levels were low in individuals with this disease and correlated with its severity as determined by using lung tissue from areas with mild and severe emphysema obtained from the same patient. Its expression negatively correlated with high oxidative stress as observed by 4-hydroxynonenal levels. We also detected decreased serine phosphorylation within S100A8 by PKAα in this disease. This correlated with increased S100A8 ubiquitination by SYVN1. Moreover, we cultured ATII cells isolated from nonsmokers followed by treatment with cigarette smoke extract. We found that this exposure upregulated S100A8 expression. We also confirmed the cytoprotective role of S100A8 against cell injury using gain- and loss-of-function approaches in vitro. S100A8 knockdown sensitized cells to apoptosis induced by cigarette smoke. In contrast, S100A8 overexpression rescued cell injury. Our results suggest that S100A8 protects ATII cells against injury and cigarette smoke-induced emphysema. Targeting S100A8 may provide a potential therapeutic strategy for this disease.


Assuntos
Células Epiteliais Alveolares/metabolismo , Calgranulina A/metabolismo , Alvéolos Pulmonares/metabolismo , Enfisema Pulmonar/metabolismo , Células A549 , Idoso , Aldeídos/farmacologia , Células Epiteliais Alveolares/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Fumar Cigarros/efeitos adversos , Feminino , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , RNA Mensageiro/metabolismo , Nicotiana/efeitos adversos , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA