Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 29(5): 7261-7275, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726231

RESUMO

Nanophotonic materials enable unprecedented control of light-matter interactions, including the ability to dynamically steer or shape wavefronts. Consequently, nanophotonic systems such as metasurfaces have been touted as promising candidates for free-space optical communications, directed energy and additive manufacturing, which currently rely on slow mechanical scanners or electro-optical components for beam steering and shaping. However, such applications necessitate the ability to support high laser irradiances (> kW/cm2) and systematic studies on the high-power laser damage performance of nanophotonic materials and designs are sparse. Here, we experimentally investigate the pulsed laser-induced damage performance (at λ ∼ 1 µm) of model nanophotonic thin films including gold, indium tin oxide, and refractory materials such as titanium nitride and titanium oxynitride. We also model the spatio-thermal dissipation dynamics upon single-pulse illumination by anchoring experimental laser damage thresholds. Our findings show that gold exhibits the best laser damage resistance, but we argue that alternative materials such as transparent conducting oxides could be optimized to balance the tradeoff between damage resistance and optical tunability, which is critical for the design of thermally robust nanophotonic systems. We also discuss damage mitigation and ruggedization strategies for future device-scale studies and applications requiring high power beam manipulation.

2.
Opt Express ; 24(4): 3921-8, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907045

RESUMO

We demonstrate the strong coupling of dye molecules to surface plasmon polaritons (SPPs) excited in the Kretschmann geometry and propagating at the interface of silver and dye-doped polymer. The dispersion curve of such a system, studied in the reflectometry experiments, is split into three branches and demonstrates an avoided crossing - the signature of a strong coupling. We have further studied the excitation spectra of the dye emission and found that the positions of the excitation peaks have a good match with the points in the dispersion curve determined by the reflectometry. At the same time, the analysis of the spectra of the plasmon-mediated spontaneous emission, decoupled to the prism and acquired at multiple collection angles, has resulted in a quite different dispersion curve exhibiting a non-trivial splitting into multiple branches. This suggests that the same plasmonic environment couples differently to absorbing and emitting dye molecules.

3.
Opt Express ; 24(22): 25653-25664, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828501

RESUMO

We have studied strong exciton-plasmon coupling in the films of Ag nanoislands as well as in the layer-by-layer (LBL) deposited films of Au nanoparticles (NPs) coated with highly concentrated rhodamine 6G (R6G) dye. Their absorbance and the reflectance spectra featured the peaks or dips, which were not characteristic of dye or NPs/nanoislands taken separately. The positions of the spectral maxima (or minima) in the dye-doped films, plotted against those in pristine Ag nanoislands films, resulted in the dispersion curves comprised of three branches. They could be described by the analytical model based on the Hamiltonian accounting for the unperturbed energies of the surface plasmon (SP) resonance, the two bands composing the absorption spectrum of R6G dye, and the exciton-plasmon coupling energy Δ. Its value was larger in Ag nanoislands films deposited on hyperbolic metamaterials (0.221 eV) than on glass (0.165 eV). The minimal gap between the upper and the lower branches was equal to ≈3Δ. The dispersion curves in the Au NPs LBL films could be described with the Hamiltonian equation at relatively small dye concentrations. At larger concentrations of R6G molecules, the spectral peaks shifted and became more pronounced. The corresponding dispersion curve could not be described in terms of the existing model, indicating the need for further theoretical studies.

4.
Opt Express ; 21(12): 14956-61, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787683

RESUMO

We show that roughened surfaces of hyperbolic metamaterials scatter light preferentially inside the media, resulting in a very low reflectance. This phenomenon of fundamental importance, demonstrated experimentally in arrays of silver nanowires grown in alumina membranes, is consistent with a broad-band singularity in the density of photonic states. It paves the road to a variety of applications ranging from the stealth technology to high-efficiency solar cells and photodetectors.


Assuntos
Modelos Químicos , Nanopartículas/química , Nanopartículas/ultraestrutura , Refratometria/métodos , Simulação por Computador , Luz , Nanopartículas/efeitos da radiação , Espalhamento de Radiação , Propriedades de Superfície
5.
Opt Express ; 21(12): 14962-74, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787684

RESUMO

The hyperbolic and plasmonic properties of silicon nanowire/Ag arrays have been investigated. The aligned nanowire arrays were formed and coated by atomic layer deposition of Ag, which itself is a metamaterial due to its unique mosaic film structure. The theoretical and numerical studies suggest that the fabricated arrays have hyperbolic dispersion in the visible and IR ranges of the spectrum. The theoretical predictions have been indirectly confirmed by polarized reflection spectra, showing reduction of the reflection in p polarization in comparison to that in s polarization. Studies of dye emission on top of Si/Ag nanowire arrays show strong emission quenching and shortening of dye emission kinetics. This behavior is also consistent with the predictions for hyperbolic media. The measured SERS signals were enhanced by almost an order of magnitude for closely packed and aligned nanowires, compared to random nanowire composites. These results agree with electric field simulations of these array structures.


Assuntos
Nanopartículas Metálicas/química , Modelos Químicos , Refratometria/métodos , Silício/química , Prata/química , Simulação por Computador , Luz , Teste de Materiais , Nanopartículas Metálicas/efeitos da radiação , Espalhamento de Radiação , Silício/efeitos da radiação , Prata/efeitos da radiação
6.
Sci Rep ; 5: 14620, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26434679

RESUMO

Proximity to metallic surfaces, plasmonic structures, cavities and other inhomogeneous dielectric environments is known to control spontaneous emission, energy transfer, scattering, and many other phenomena of practical importance. The aim of the present study was to demonstrate that, in spirit of the Marcus theory, the rates of chemical reactions can, too, be influenced by nonlocal dielectric environments, such as metallic films and metal/dielectric bilayer or multilayer structures. We have experimentally shown that metallic, composite metal/dielectric substrates can, indeed, control ordering as well as photodegradation of thin poly-3-hexylthiophene (p3ht) films. In many particular experiments, p3ht films were separated from metal by a dielectric spacer, excluding conventional catalysis facilitated by metals and making modification of the nonlocal dielectric environment a plausible explanation for the observed phenomena. This first step toward understanding of a complex relationship between chemical reactions and nonlocal dielectric environments is to be followed by the theory development and a broader scope of thorough experimental studies.

7.
Faraday Discuss ; 178: 395-412, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803206

RESUMO

Optical cavities, plasmonic structures, photonic band crystals and interfaces, as well as, generally speaking, any photonic media with homogeneous or spatially inhomogeneous dielectric permittivity (including metamaterials) have local densities of photonic states, which are different from that in vacuum. These modified density of states environments are known to control both the rate and the angular distribution of spontaneous emission. In the present study, we question whether the proximity to metallic and metamaterial surfaces can affect other physical phenomena of fundamental and practical importance. We show that the same substrates and the same nonlocal dielectric environments that boost spontaneous emission, also inhibit Förster energy transfer between donor and acceptor molecules doped into a thin polymeric film. This finding correlates with the fact that in dielectric media, the rate of spontaneous emission is proportional to the index of refraction n, while the rate of the donor-acceptor energy transfer (in solid solutions with a random distribution of acceptors) is proportional to n(-1.5). This heuristic correspondence suggests that other classical and quantum phenomena, which in regular dielectric media depend on n, can also be controlled with custom-tailored metamaterials, plasmonic structures, and cavities.

8.
Sci Rep ; 4: 4969, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24957679

RESUMO

Spontaneous emission is one of the most fundamental quantum phenomena in optics. Following the seminal work of Purcell and in agreement with the Fermi's Golden Rule, its rate can be controlled with the photonic density of states (PDOS). In recent years, this effect has been demonstrated in metamaterials with hyperbolic dispersion--highly anisotropic composite materials, which have a broad-band singularity of the density of photonic states. At this time, we show that hyperbolic metamaterials can control spontaneous emission spectra as well. Experimentally, DCM laser dye has been embedded into lamellar metal/dielectric metamaterial. The observed 18 nm blue shift of emission is explained by strong dispersion of the density of photonic states. On the other hand, practically no spectral shift has been observed in the excitation spectra of the same dye. This suggests that the effect of PDOS on spontaneous emission is very different from its effect on excitation and absorption.

9.
Sci Rep ; 4: 7327, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25476126

RESUMO

We have studied angular distribution of emission of dye molecules deposited on lamellar metal/dielectric and Si/Ag nanowire based metamaterials with hyperbolic dispersion. In agreement with the theoretical prediction, the emission pattern of dye on top of lamellar metamaterial is similar to that on top of metal. At the same time, the effective medium model predicts the emission patterns of the nanowire array and the dye film deposited on glass to be nearly identical to each other. This is not the case of our experiment. We tentatively explain the nearly Lambertian (∝cosθ) angular distribution of emission of the nanowire based sample by a surface roughness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA