Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Chem Biol ; 17(3): 298-306, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495648

RESUMO

The adenosine monophosphate (AMP)-activated protein kinase (Ampk) is a central regulator of metabolic pathways, and increasing Ampk activity has been considered to be an attractive therapeutic target. Here, we have identified an orphan ubiquitin E3 ligase subunit protein, Fbxo48, that targets the active, phosphorylated Ampkα (pAmpkα) for polyubiquitylation and proteasomal degradation. We have generated a novel Fbxo48 inhibitory compound, BC1618, whose potency in stimulating Ampk-dependent signaling greatly exceeds 5-aminoimidazole-4-carboxamide-1-ß-ribofuranoside (AICAR) or metformin. This compound increases the biological activity of Ampk not by stimulating the activation of Ampk, but rather by preventing activated pAmpkα from Fbxo48-mediated degradation. We demonstrate that, consistent with augmenting Ampk activity, BC1618 promotes mitochondrial fission, facilitates autophagy and improves hepatic insulin sensitivity in high-fat-diet-induced obese mice. Hence, we provide a unique bioactive compound that inhibits pAmpkα disposal. Together, these results define a new pathway regulating Ampk biological activity and demonstrate the potential utility of modulating this pathway for therapeutic benefit.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Hipoglicemiantes/farmacologia , Obesidade/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Linhagem Celular Transformada , Dieta Hiperlipídica , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Proteínas F-Box , Humanos , Hipoglicemiantes/síntese química , Resistência à Insulina , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Dinâmica Mitocondrial/efeitos dos fármacos , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Fosforilação , Poliubiquitina/genética , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L484-L494, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997276

RESUMO

Accumulation of excessive extracellular matrix (ECM) components from lung fibroblasts is a feature of systemic sclerosis-associated interstitial lung disease (SSc-ILD), and there is increasing evidence that innate immune signaling pathways contribute to these processes. Toll-like receptors (TLRs) are innate immune sensors activated by danger signals derived from pathogens or host molecular patterns. Several damage-associated molecular pattern (DAMP) molecules are elevated in SSc-ILD plasma, including ligands that activate TLR9, an innate immune sensor recently implicated in driving profibrotic responses in fibroblasts. Fibronectin and the isoform fibronectin-extra domain A (FN-EDA) are prominent in pathological extracellular matrix accumulation, but mechanisms promoting FN-EDA accumulation are only partially understood. Here, we show that TLR9 activation increases FN-EDA accumulation in MRC5 and SSc-ILD fibroblasts, but that this effect is independent of changes in FN-EDA gene transcription. Rather, we describe a novel mechanism where TLR9 activation inhibits FN-EDA turnover via reduced FN-EDA ubiquitination. TLR9 ligand ODN2006 reduces ubiquitinated FN-EDA destined for lysosomal degradation, an effect abrogated with TLR9 knockdown or inhibition. Taken together, these results provide rationale for disrupting the TLR9 signaling axis or FN-EDA degradation pathways to reduce FN-EDA accumulation in SSc-ILD fibroblasts. More broadly, enhancing intracellular degradation of ECM components through TLR9 inhibition or enhanced ECM turnover could be a novel strategy to attenuate pathogenic ECM accumulation in SSc-ILD.


Assuntos
Fibronectinas , Doenças Pulmonares Intersticiais , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Ligantes , Doenças Pulmonares Intersticiais/metabolismo , Isoformas de Proteínas/metabolismo , Receptor Toll-Like 9/genética , Ubiquitinação
3.
J Biol Chem ; 295(13): 4171-4180, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32071084

RESUMO

Systemic scleroderma (SSc) is an autoimmune disease that affects over 2.5 million people globally. SSc results in dysfunctional connective tissues with excessive profibrotic signaling, affecting skin, cardiovascular, and particularly lung tissue. Over three-quarters of individuals with SSc develop pulmonary fibrosis within 5 years, the main cause of SSc mortality. No approved medicines to manage lung SSc currently exist. Recent research suggests that profibrotic signaling by transforming growth factor ß (TGF-ß) is directly tied to SSc. Previous studies have also shown that ubiquitin E3 ligases potently control TGF-ß signaling through targeted degradation of key regulatory proteins; however, the roles of these ligases in SSc-TGF-ß signaling remain unclear. Here we utilized primary SSc patient lung cells for high-throughput screening of TGF-ß signaling via high-content imaging of nuclear translocation of the profibrotic transcription factor SMAD family member 2/3 (SMAD2/3). We screened an RNAi library targeting ubiquitin E3 ligases and observed that knockdown of the E3 ligase Kelch-like protein 42 (KLHL42) impairs TGF-ß-dependent profibrotic signaling. KLHL42 knockdown reduced fibrotic tissue production and decreased TGF-ß-mediated SMAD activation. Using unbiased ubiquitin proteomics, we identified phosphatase 2 regulatory subunit B'ϵ (PPP2R5ϵ) as a KLHL42 substrate. Mechanistic experiments validated ubiquitin-mediated control of PPP2R5ϵ stability through KLHL42. PPP2R5ϵ knockdown exacerbated TGF-ß-mediated profibrotic signaling, indicating a role of PPP2R5ϵ in SSc. Our findings indicate that the KLHL42-PPP2R5ϵ axis controls profibrotic signaling in SSc lung fibroblasts. We propose that future studies could investigate whether chemical inhibition of KLHL42 may ameliorate profibrotic signaling in SSc.


Assuntos
Proteína Fosfatase 2/genética , Escleroderma Sistêmico/genética , Proteína Smad2/genética , Fator de Crescimento Transformador beta/genética , Ubiquitina-Proteína Ligases/genética , Fibroblastos/metabolismo , Fibrose/genética , Fibrose/patologia , Humanos , Pulmão/citologia , Pulmão/metabolismo , Proteólise , Proteômica , Escleroderma Sistêmico/patologia , Transdução de Sinais/genética
4.
Front Pharmacol ; 13: 828643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145418

RESUMO

Aquaporin 5 (AQP5) is expressed in several cell types in the lung and regulates water transport, which contributes to barrier function during injury and the composition of glandular secretions. Reduced AQP5 expression is associated with barrier dysfunction during acute lung injury, and strategies to enhance its expression are associated with favorable phenotypes. Thus, pharmacologically enhancing AQP5 expression could be beneficial. Here, we optimized a high-throughput assay designed to detect AQP5 abundance using a cell line stably expressing bioluminescent-tagged AQP5. We then screened a library of 1153 compounds composed of FDA-approved drugs for their effects on AQP5 abundance. We show compounds Niclosamide, Panobinostat, and Candesartan Celexitil increased AQP5 abundance, and show that Niclosamide has favorable cellular toxicity profiles. We determine that AQP5 levels are regulated in part by ubiquitination and proteasomal degradation in lung epithelial cells, and mechanistically Niclosamide increases AQP5 levels by reducing AQP5 ubiquitination and proteasomal degradation. Functionally, Niclosamide stabilized AQP5 levels in response to hypotonic stress, a stimulus known to reduce AQP5 levels. In complementary assays, Niclosamide increased endogenous AQP5 in both A549 cells and in primary, polarized human bronchial epithelial cells compared to control-treated cells. Further, we measured rapid cell volume changes in A549 cells in response to osmotic stress, an effect controlled by aquaporin channels. Niclosamide-treated A549 cell volume changes occurred more rapidly compared to control-treated cells, suggesting that increased Niclosamide-mediated increases in AQP5 expression affects functional water transport. Taken together, we describe a strategy to identify repurposed compounds for their effect on AQP5 protein abundance. We validated the effects of Niclosamide on endogenous AQP5 levels and in regulating cell-volume changes in response to tonicity changes. Our findings highlight a unique approach to screen for drug effects on protein abundance, and our workflow can be applied broadly to study compound effects on protein abundance in lung epithelial cells.

5.
Nat Commun ; 12(1): 3907, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162861

RESUMO

SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identify small molecules that reduce surface expression of TMPRSS2 using a library of 2,560 FDA-approved or current clinical trial compounds. We identify homoharringtonine and halofuginone as the most attractive agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrate marked resistance to SARS-CoV-2 infection in both live and pseudoviral in vitro models. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat active COVID-19 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Mepesuccinato de Omacetaxina/farmacologia , Piperidinas/farmacologia , Quinazolinonas/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Células Cultivadas , Chlorocebus aethiops , Ensaios de Triagem em Larga Escala/métodos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Inibidores da Síntese de Proteínas/farmacologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Redox Biol ; 32: 101485, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171724

RESUMO

NRF2 is a master regulator of cellular anti-oxidant and anti-inflammatory responses, and strategies to augment NRF2-dependent responses may beneficial in many diseases. Basal NRF2 protein level is constrained by constitutive KEAP1-mediated degradation, but in the presence of electrophiles, NRF2 ubiquitination is inhibited. Impeded NRF2 degradation increases NRF2 protein, resulting in up-regulation of anti-oxidant gene transcription, and decreased inflammation. KEAP1-independent mechanisms regulating NRF2 stability have also been reported. Here we employed an HTS approach and identified a small molecule, BC-1901S, that stabilized NRF2 and increased its activity. BC-1901S activated NRF2 by inhibiting NRF2 ubiquitination in a KEAP1-independent manner. It further increased NRF2-dependent anti-oxidant gene transcription, and exhibited anti-inflammatory effects in vitro and in vivo. Further, we identified a new NRF2-interacting partner, DDB1 and CUL4 Associated Factor 1 (DCAF1), an E3 ligase that targeted NRF2 for proteasomal degradation. Mechanistically, BC-1901S directly bound to DCAF1 and disrupted NRF2/DCAF1 interaction, thus activating NRF2. These findings provide new insights in NRF2 biology and NRF2 based anti-inflammatory therapy.


Assuntos
Fator 2 Relacionado a NF-E2 , Ubiquitina-Proteína Ligases , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA