Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 72(5): 918-928, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36627187

RESUMO

OBJECTIVE: Gestational diabetes mellitus (GDM) is a condition in which women without diabetes are diagnosed with glucose intolerance during pregnancy, typically in the second or third trimester. Early diagnosis, along with a better understanding of its pathophysiology during the first trimester of pregnancy, may be effective in reducing incidence and associated short-term and long-term morbidities. DESIGN: We comprehensively profiled the gut microbiome, metabolome, inflammatory cytokines, nutrition and clinical records of 394 women during the first trimester of pregnancy, before GDM diagnosis. We then built a model that can predict GDM onset weeks before it is typically diagnosed. Further, we demonstrated the role of the microbiome in disease using faecal microbiota transplant (FMT) of first trimester samples from pregnant women across three unique cohorts. RESULTS: We found elevated levels of proinflammatory cytokines in women who later developed GDM, decreased faecal short-chain fatty acids and altered microbiome. We next confirmed that differences in GDM-associated microbial composition during the first trimester drove inflammation and insulin resistance more than 10 weeks prior to GDM diagnosis using FMT experiments. Following these observations, we used a machine learning approach to predict GDM based on first trimester clinical, microbial and inflammatory markers with high accuracy. CONCLUSION: GDM onset can be identified in the first trimester of pregnancy, earlier than currently accepted. Furthermore, the gut microbiome appears to play a role in inflammation-induced GDM pathogenesis, with interleukin-6 as a potential contributor to pathogenesis. Potential GDM markers, including microbiota, can serve as targets for early diagnostics and therapeutic intervention leading to prevention.


Assuntos
Diabetes Gestacional , Microbiota , Gravidez , Feminino , Humanos , Diabetes Gestacional/diagnóstico , Terceiro Trimestre da Gravidez , Inflamação , Citocinas
2.
Mol Ecol ; 32(9): 2111-2114, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36748907

RESUMO

Research on microbiota dynamics in humans (Gilbert et al., 2018), model organisms (Douglas, 2019), and free-ranging, wild animals (Grond et al., 2018) has taken off in the past decades, and even in nonmodel organisms, research has already shifted from initial characterization studies to those examining associations with behaviour and fitness (Bodawatta et al., 2022; Corl et al., 2020; Risely et al., 2018; Turjeman et al., 2020). The microbiota is known to change through pregnancy and parturition (Koren et al., 2012), and there is also evidence in humans that infertility may be associated with microbiota composition (Silva & Giacobini, 2019), but how the microbiota is related to reproductive fitness in free-ranging species is largely understudied or primarily focused on pathogen transmission (sexually transmitted infection) (Lombardo, 1998; Sheldon, 1993). In a From the Cover article in this issue of Molecular Ecology, Leclaire et al. (2022) begin to tease apart the relationship between the microbiota and reproductive fitness using the black-legged kittiwake (Rissa tridactyla) as their study species. Following characterization of the microbiota in multiple body sites of breeders and nonbreeders, they discovered that breeding and nonbreeding females had distinct microbiota, that higher performing female breeders had lower abundances of potentially pathogenic taxa, and that feathers of these birds were characterized by reduced microbiota diversity compared to low-performance breeders. Leclaire and her colleagues provide some of the first evidence of body-wide differences in microbiota composition in relation to breeding status. Their research further supports the relationship between the microbiota and host fitness, and additional studies focusing on this topic can continue to unravel intricacies in host-microbiota-reproductive strategy evolution (Comizzoli et al., 2021; Rowe et al., 2020). Here, I review the results of Leclaire et al. (2022) and provide a wider context for their research by reviewing other studies in the field, focusing on avian species.


Assuntos
Charadriiformes , Microbiota , Animais , Humanos , Feminino , Animais Selvagens , Aves , Microbiota/genética , Biologia
3.
New Microbiol ; 45(3): 193-198, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35920874

RESUMO

Gastrointestinal (GI) microbial populations are important in maintaining normal functioning of the GI by preventing disorders. Dysbiotic microbiota may increase the likelihood of small intestinal bacterial overgrowth (SIBO), a syndrome associated with significant morbidity. We aimed to inves- tigate the microbiota populations of patients with SIBO. Patients with symptoms of SIBO were consecutively enrolled; they underwent a SIBO hydrogen breath test and stool was collected for microbiome analysis by sequencing of the 16S rRNA. Of the 55 patients recruited, 42 (76.4%) were positive for SIBO. When visualizing the bacterial ß-di- versity, a sub-cluster of patients was identified. Further examination of these patients' records re- vealed previous treatment for Helicobacter pylori (HP). Microbiome analysis of these patients demonstrated a significant decrease in ß-diversity (p-value<0.001) compared to patients without previous HP therapy. Furthermore, ß-diversity was significantly different in this subgroup, and sev- eral bacterial taxa were differentially expressed, including one from the genus Methanobrevibacter, which was reduced in patients that previously underwent HP treatment. Our findings suggest that while symptoms associated with SIBO may cause dysbiosis, there was no differentiation in fecal microbiome composition based on SIBO diagnosis. Furthermore, our results support previous observations regarding antibiotic-altered microbiota with effects extending two and three years post-treatment.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Síndrome do Intestino Irritável , Microbiota , Animais , Bovinos , Disbiose/complicações , Disbiose/microbiologia , Infecções por Helicobacter/complicações , Helicobacter pylori/genética , Humanos , Intestino Delgado/microbiologia , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/microbiologia , RNA Ribossômico 16S/genética
4.
Proc Biol Sci ; 288(1942): 20202670, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33434462

RESUMO

Early-life conditions have critical, long-lasting effects on the fate of individuals, yet early-life activity has rarely been linked to subsequent survival of animals in the wild. Using high-resolution GPS and body-acceleration data of 93 juvenile white storks (Ciconia ciconia), we examined the links between behaviour during both pre-fledging and post-fledging (fledging-to-migration) periods and subsequent first-year survival. Juvenile daily activity (based on overall dynamic body acceleration) showed repeatable between-individual variation, the juveniles' pre- and post-fledging activity levels were correlated and both were positively associated with subsequent survival. Daily activity increased gradually throughout the post-fledging period, and the relationship between post-fledging activity and survival was stronger in individuals who increased their daily activity level faster (an interaction effect). We suggest that high activity profiles signified individuals with increased pre-migratory experience, higher individual quality and perhaps more proactive personality, which could underlie their superior survival rates. The duration of individuals' fledging-to-migration periods had a hump-shaped relationship with survival: higher survival was associated with intermediate rather than short or long durations. Short durations reflect lower pre-migratory experience, whereas very long ones were associated with slower increases in daily activity level which possibly reflects slow behavioural development. In accordance with previous studies, heavier nestlings and those that hatched and migrated earlier had increased survival. Using extensive tracking data, our study exposed new links between early-life attributes and survival, suggesting that early activity profiles in migrating birds can explain variation in first-year survival.


Assuntos
Migração Animal , Aves , Animais , Estações do Ano
5.
Mol Ecol ; 30(19): 4723-4739, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260783

RESUMO

Human activities shape resources available to wild animals, impacting diet and probably altering their microbiota and overall health. We examined drivers shaping microbiota profiles of common cranes (Grus grus) in agricultural habitats by comparing gut microbiota and crane movement patterns (GPS-tracking) over three periods of their migratory cycle, and by analysing the effect of artificially supplemented food provided as part of a crane-agriculture management programme. We sampled faecal droppings in Russia (nonsupplemented, premigration) and in Israel in late autumn (nonsupplemented, postmigration) and winter (supplemented and nonsupplemented, wintering). As supplemented food is typically homogenous, we predicted lower microbiota diversity and different composition in birds relying on supplementary feeding. We did not observe changes in microbial diversity with food supplementation, as diversity differed only in samples from nonsupplemented wintering sites. However, both food supplementation and season affected bacterial community composition and led to increased abundance of specific genera (mostly Firmicutes). Cranes from the nonsupplemented groups spent most of their time in agricultural fields, probably feeding on residual grain when available, while food-supplemented cranes spent most of their time at the feeding station. Thus, nonsupplemented and food-supplemented diets probably diverge only in winter, when crop rotation and depletion of anthropogenic resources may lead to a more variable diet in nonsupplemented sites. Our results support the role of diet in structuring bacterial communities and show that they undergo both seasonal and human-induced shifts. Movement analyses provide important clues regarding host diet and behaviour towards understanding how human-induced changes shape the gut microbiota in wild animals.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Aves , Suplementos Nutricionais , Humanos , RNA Ribossômico 16S/genética
6.
Mol Ecol ; 29(7): 1358-1371, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32115796

RESUMO

The behavioural ecology of host species is likely to affect their microbial communities, because host sex, diet, physiology, and movement behaviour could all potentially influence their microbiota. We studied a wild population of barn owls (Tyto alba) and collected data on their microbiota, movement, diet, size, coloration, and reproduction. The composition of bacterial species differed by the sex of the host and female owls had more diverse bacterial communities than their male counterparts. The abundance of two families of bacteria, Actinomycetaceae and Lactobacillaceae, also varied between the sexes, potentially as a result of sex differences in hormones and immunological function, as has previously been found with Lactobacillaceae in the microbiota of mice. Male and female owls did not differ in the prey they brought to the nest, which suggests that dietary differences are unlikely to underlie the differences in their microbiota. The movement behaviour of the owls was associated with the host microbiota in both males and females because owls that moved further from their nest each day had more diverse bacterial communities than owls that stayed closer to their nests. This novel result suggests that the movement ecology of hosts can impact their microbiota, potentially on the basis of their differential encounters with new bacterial species as the hosts move and forage across the landscape. Overall, we found that many aspects of the microbial community are correlated with the behavioural ecology of the host and that data on the microbiota can aid in generating new hypotheses about host behaviour.


Assuntos
Microbiota , Atividade Motora , Caracteres Sexuais , Estrigiformes/microbiologia , Animais , Dieta/veterinária , Feminino , Israel , Masculino , Reprodução
7.
Mol Ecol ; 29(23): 4706-4720, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33001530

RESUMO

Animals generally benefit from their gastrointestinal microbiome, but the factors that influence the composition and dynamics of their microbiota remain poorly understood. Studies of nonmodel host species can illuminate how microbiota and their hosts interact in natural environments. We investigated the role of migratory behaviour in shaping the gut microbiota of free-ranging barn swallows (Hirundo rustica) by studying co-occurring migrant and resident subspecies sampled during the autumn migration at a migratory bottleneck. We found that within-host microbial richness (α-diversity) was similar between migrant and resident microbial communities. In contrast, we found that microbial communities (ß-diversity) were significantly different between groups regarding both microbes present and their relative abundances. Compositional differences were found for 36 bacterial genera, with 27 exhibiting greater abundance in migrants and nine exhibiting greater abundance in residents. There was heightened abundance of Mycoplasma spp. and Corynebacterium spp. in migrants, a pattern shared by other studies of migratory species. Screens for key regional pathogens revealed that neither residents nor migrants carried avian influenza viruses and Newcastle disease virus, suggesting that the status of these diseases did not underlie observed differences in microbiome composition. Furthermore, the prevalence and abundance of Salmonella spp., as determined from microbiome data and cultural assays, were both low and similar across the groups. Overall, our results indicate that microbial composition differs between migratory and resident barn swallows, even when they are conspecific and sympatrically occurring. Differences in host origins (breeding sites) may result in microbial community divergence, and varied behaviours throughout the annual cycle (e.g., migration) could further differentiate compositional structure as it relates to functional needs.


Assuntos
Microbioma Gastrointestinal , Microbiota , Andorinhas , Migração Animal , Animais , Bactérias/genética
9.
J Anim Ecol ; 87(6): 1627-1638, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30120893

RESUMO

Early arrival at breeding grounds is of prime importance for migrating birds as it is known to enhance breeding success. Adults, males and higher quality individuals typically arrive earlier, and across years, early arrival has been linked to warmer spring temperatures. However, the mechanisms and potential costs of early arrival are not well understood. To deepen the understanding of arrival date differences between individuals and years, we studied them in light of the preceding spring migration behaviour and atmospheric conditions en route. GPS and body acceleration (ACC) data were obtained for 35 adult white storks (Ciconia ciconia) over five years (2012-2016). ACC records were translated to energy expenditure estimates (overall dynamic body acceleration; ODBA) and to behavioural modes, and GPS fixes were coupled with environmental parameters. At the interindividual level (within years), early arrival was attributed primarily to departing earlier for migration and from more northern wintering sites (closer to breeding grounds), rather than to migration speed. In fact, early-departing birds flew slower, experienced weaker thermal uplifts and expended more energy during flight, but still arrived earlier, emphasizing the cost and the significance of early departure. Individuals that wintered further south arrived later at the breeding grounds but did not produce fewer fledglings, presumably due to positive carry-over effects of advantageous wintering conditions (increased precipitation, vegetation productivity and daylight time). Therefore, early arrival increased breeding success only after controlling for wintering latitude. Males arrived slightly ahead of females. Between years, late arrival was linked to colder temperatures en route through two different mechanisms: stronger headwinds causing slower migration and lower thermal uplifts resulting in longer stopovers. This study showed that distinct migratory properties underlie arrival time variation within and between years. It highlighted (a) an overlooked cost of early arrival induced by unfavourable atmospheric conditions during migration, (b) an important fitness trade-off in storks between arrival date and wintering habitat quality and (c) mechanistic explanations for the negative temperature-arrival date correlation in soaring birds. Such understanding of arrival time can facilitate forecasting migrating species responses to climate changes.


Assuntos
Migração Animal , Cruzamento , Animais , Aves , Mudança Climática , Feminino , Masculino , Estações do Ano
10.
J Anim Ecol ; 85(4): 938-47, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27046512

RESUMO

Migration conveys an immense challenge, especially for juvenile birds coping with enduring and risky journeys shortly after fledging. Accordingly, juveniles exhibit considerably lower survival rates compared to adults, particularly during migration. Juvenile white storks (Ciconia ciconia), which are known to rely on adults during their first fall migration presumably for navigational purposes, also display much lower annual survival than adults. Using detailed GPS and body acceleration data, we examined the patterns and potential causes of age-related differences in fall migration properties of white storks by comparing first-year juveniles and adults. We compared juvenile and adult parameters of movement, behaviour and energy expenditure (estimated from overall dynamic body acceleration) and placed this in the context of the juveniles' lower survival rate. Juveniles used flapping flight vs. soaring flight 23% more than adults and were estimated to expend 14% more energy during flight. Juveniles did not compensate for their higher flight costs by increased refuelling or resting during migration. When juveniles and adults migrated together in the same flock, the juvenile flew mostly behind the adult and was left behind when they separated. Juveniles showed greater improvement in flight efficiency throughout migration compared to adults which appears crucial because juveniles exhibiting higher flight costs suffered increased mortality. Our findings demonstrate the conflict between the juveniles' inferior flight skills and their urge to keep up with mixed adult-juvenile flocks. We suggest that increased flight costs are an important proximate cause of juvenile mortality in white storks and likely in other soaring migrants and that natural selection is operating on juvenile variation in flight efficiency.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Voo Animal/fisiologia , Mortalidade , Fatores Etários , Animais , Comportamento Animal , Metabolismo Energético , Tecnologia de Sensoriamento Remoto , Comportamento Social
11.
Anim Microbiome ; 6(1): 19, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650014

RESUMO

BACKGROUND: A mother's milk is considered the gold standard of nutrition in neonates and is a source of cytokines, immunoglobulins, growth factors, and other important components, yet little is known about the components of canine milk, specifically colostrum, and the knowledge related to its microbial and metabolic profiles is particularly underwhelming. In this study, we characterized canine colostrum and milk microbiota and metabolome for several breeds of dogs and examined profile shifts as milk matures in the first 8 days post-whelping. RESULTS: Through untargeted metabolomics, we identified 63 named metabolites that were significantly differentially abundant between days 1 and 8 of lactation. Surprisingly, the microbial compositions of the colostrum and milk, characterized using 16S rRNA gene sequencing, were largely similar, with only two differentiating genera. The shifts observed, mainly increases in several sugars and amino sugars over time and shifts in amino acid metabolites, align with shifts observed in human milk samples and track with puppy development. CONCLUSION: Like human milk, canine milk composition is dynamic, and shifts are well correlated with developing puppies' needs. Such a study of the metabolic profile of canine milk, and its relation to the microbial community, provides insights into the changing needs of the neonate, as well as the ideal nutrition profile for optimal functionality. This information will add to the existing knowledge base of canine milk composition with the prospect of creating a quality, tailored milk substitute or supplement for puppies.

12.
Geroscience ; 46(2): 1477-1488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37610596

RESUMO

Microbiota composition has been linked to physical activity, health measures, and biological age, but a shared profile has yet to be shown. The aim of this study was to examine the associations between microbiota composition and measures of function, such as a composite measure of physical capacity, and biological age in midlife, prior to onset of age-related diseases. Seventy healthy midlife individuals (age 44.58 ± 0.18) were examined cross-sectionally, and their gut-microbiota profile was characterized from stool samples using 16SrRNA gene sequencing. Biological age was measured using the Klemera-Doubal method and a composition of blood and physiological biomarkers. Physical capacity was calculated based on sex-standardized functional tests. We demonstrate that the women had significantly richer microbiota, p = 0.025; however, microbiota diversity was not linked with chronological age, biological age, or physical capacity for either women or men. Men had slightly greater ß-diversity; however, ß-diversity was positively associated with biological age and with physical capacity for women only (p = 0.01 and p = 0.04; respectively). For women, an increase in abundance of Roseburia faecis and Collinsella aerofaciens, as well as genus Ruminococcus and Dorea, was significantly associated with higher biological age and lower physical capacity; an increase in abundance of Akkermansia muciniphila and genera Bacteroides and Alistipes was associated with younger biological age and increased physical capacity. Differentially abundant taxa were also associated with non-communicable diseases. These findings suggest that microbiota composition is a potential mechanism linking physical capacity and health status; personalized probiotics may serve as a new means to support health-promoting interventions in midlife. Investigating additional factors underlying this link may facilitate the development of a more accurate method to estimate the rate of aging.


Assuntos
Microbioma Gastrointestinal , Caracteres Sexuais , Humanos , Masculino , Feminino , Microbioma Gastrointestinal/fisiologia , Exercício Físico , Envelhecimento
13.
J Vet Intern Med ; 38(1): 152-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37890857

RESUMO

BACKGROUND: Giardia duodenalis (Gd) causes intestinal parasitosis. The involvement of the intestinal microbiome in determining the infection's clinical phenotype is unknown. OBJECTIVE: Investigate the fecal microbiome features in dogs with giardiasis. ANIMALS AND METHODS: Cross-sectional study, including fecal samples of kenneled dogs with Gd diagnosed by fecal Giardia antigen dot ELISA. The fecal microbial compositional characteristics and dysbiosis index (DI) were compared between diarrheic and nondiarrheic dogs. RESULTS: Fecal samples of 38 Gd-infected dogs (diarrheic, 21; nondiarrheic, 17) were included. No differences were found in Faith's phylogenic diversity and beta diversity (weighted UniFrac distances) and in specific taxa abundances at the phylum, genus, and species levels, as well as in alpha and beta diversities between diarrheic and nondiarrheic dogs, and also when divided by sex or age. Among diarrheic dogs, alpha diversity was higher in males than in females (pairwise Kruskal-Wallis, q = 0.01). Among males, fecal abundances of the genus Clostridium (W = 19) and Clostridium spiroforme species (W = 33) were higher in diarrheic compared to nondiarrheic dogs. In diarrheic dog fecal samples, Proteobacteria were more prevalent (W = 1), whereas Verrucomicrobia were less prevalent in dogs <1 year of age than in older dogs. The fecal sample DI of 19 diarrheic and 19 nondiarrheic dogs was similar (median, -0.2; range, -4.3 to 4.5 and median, -1.0; range, -4.3 to 5.8, respectively). CONCLUSIONS: The fecal microbial composition of symptomatic and asymptomatic dogs with giardiasis is similar. Based on fecal DI, giardiasis is not characterized by prominent dysbiosis. Other host and parasite characteristics might determine the severity of giardiasis in dogs.


Assuntos
Doenças do Cão , Giardíase , Microbiota , Masculino , Feminino , Animais , Cães , Giardíase/veterinária , Giardíase/diagnóstico , Estudos Transversais , Disbiose/veterinária , Diarreia/veterinária , Diarreia/microbiologia , Fezes/microbiologia , Doenças do Cão/diagnóstico
14.
Front Endocrinol (Lausanne) ; 15: 1343337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464968

RESUMO

Objectives: To investigate the role of gut microbiota (GM) in pathogenesis of idiopathic short stature (ISS) by comparing GM of ISS children to their normal-height siblings. Methods: This case-control study, conducted at the Schneider Children's Medical Center's Institute for Endocrinology and Diabetes between 4/2018-11/2020, involved 30 pairs of healthy pre-pubertal siblings aged 3-10 years, each comprising one sibling with ISS and one with normal height. Outcome measures from fecal analysis of both siblings included GM composition analyzed by 16S rRNA sequencing, fecal metabolomics, and monitoring the growth of germ-free (GF) mice after fecal transplantation. Results: Fecal analysis of ISS children identified higher predicted levels of genes encoding enzymes for pyrimidine, purine, flavin, coenzyme B, and thiamine biosynthesis, lower levels of several amino acids, and a significantly higher prevalence of the phylum Euryarchaeota compared to their normal-height siblings (p<0.001). ISS children with higher levels of Methanobrevibacter, the dominant species in the archaeal gut community, were significantly shorter in stature than those with lower levels (p=0.022). Mice receiving fecal transplants from ISS children did not experience stunted growth, probably due to the eradication of Methanobrevibacter caused by exposure to oxygen during fecal collection. Discussion: Our findings suggest that different characteristics in the GM may explain variations in linear growth. The varying levels of Methanobrevibacter demonstrated within the ISS group reflect the multifactorial nature of ISS and the potential ability of the GM to partially explain growth variations. The targeting of specific microbiota could provide personalized therapies to improve growth in children with ISS.


Assuntos
Microbioma Gastrointestinal , Irmãos , Criança , Humanos , Camundongos , Animais , Estudos de Casos e Controles , RNA Ribossômico 16S , Transtornos do Crescimento/etiologia
15.
Cancer Res Commun ; 4(4): 1063-1081, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38506672

RESUMO

Intestinal chronic inflammation is associated with microbial dysbiosis and accumulation of various immune cells including myeloid-derived suppressor cells (MDSC), which profoundly impact the immune microenvironment, perturb homeostasis and increase the risk to develop colitis-associated colorectal cancer (CAC). However, the specific MDSCs-dysbiotic microbiota interactions and their collective impact on CAC development remain poorly understood. In this study, using a murine model of CAC, we demonstrate that CAC-bearing mice exhibit significantly elevated levels of highly immunosuppressive MDSCs, accompanied by microbiota alterations. Both MDSCs and bacteria that infiltrate the colon tissue and developing tumors can be found in close proximity, suggesting intricate MDSC-microbiota cross-talk within the tumor microenvironment. To investigate this phenomenon, we employed antibiotic treatment to disrupt MDSC-microbiota interactions. This intervention yielded a remarkable reduction in intestinal inflammation, decreased MDSC levels, and alleviated immunosuppression, all of which were associated with a significant reduction in tumor burden. Furthermore, we underscore the causative role of dysbiotic microbiota in the predisposition toward tumor development, highlighting their potential as biomarkers for predicting tumor load. We shed light on the intimate MDSCs-microbiota cross-talk, revealing how bacteria enhance MDSC suppressive features and activities, inhibit their differentiation into mature beneficial myeloid cells, and redirect some toward M2 macrophage phenotype. Collectively, this study uncovers the role of MDSC-bacteria cross-talk in impairing immune responses and promoting tumor growth, providing new insights into potential therapeutic strategies for CAC. SIGNIFICANCE: MDSCs-dysbiotic bacteria interactions in the intestine play a crucial role in intensifying immunosuppression within the CAC microenvironment, ultimately facilitating tumor growth, highlighting potential therapeutic targets for improving the treatment outcomes of CAC.


Assuntos
Neoplasias Associadas a Colite , Microbioma Gastrointestinal , Células Supressoras Mieloides , Neoplasias , Animais , Camundongos , Inflamação , Microambiente Tumoral
16.
Neuropharmacology ; 227: 109453, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738776

RESUMO

The gut microbiota refers to an entire population of microorganisms that colonize the gut. This community includes viruses, prokaryotes (bacteria and archaea), and eukaryotes (fungi and parasites). Multiple studies in the last decades described the significant involvement of gut bacteria in gut-brain axis communication; however, the involvement of other members of the gut microbiota has been neglected. Recent studies found that these 'forgotten' members of the gut microbiota may also have a role in gut-brain communication, although it is still unclear whether they have a direct effect on the brain or if their effects are mediated by gut bacteria. Here, we provide concrete suggestions for future research to tease out mechanisms of the microbiota-gut-brain axis. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".


Assuntos
Microbioma Gastrointestinal , Microbiota , Bactérias , Encéfalo , Eixo Encéfalo-Intestino
17.
Nat Commun ; 14(1): 3554, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322020

RESUMO

Undernutrition affects about one out of five children worldwide. It is associated with impaired growth, neurodevelopment deficits, and increased infectious morbidity and mortality. Undernutrition, however, cannot be solely attributed to a lack of food or nutrient deficiency but rather results from a complex mix of biological and environmental factors. Recent research has shown that the gut microbiome is intimately involved in the metabolism of dietary components, in growth, in the training of the immune system, and in healthy development. In this review, we look at these features in the first three years of life, which is a critical window for both microbiome establishment and maturation and child development. We also discuss the potential of the microbiome in undernutrition interventions, which could increase efficacy and improve child health outcomes.


Assuntos
Microbioma Gastrointestinal , Desnutrição , Microbiota , Criança , Humanos , Desenvolvimento Infantil , Dieta
18.
Gut Microbes ; 15(1): 2224474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37345233

RESUMO

The human gut microbiome is associated with a large number of disease etiologies. As such, it is a natural candidate for machine-learning-based biomarker development for multiple diseases and conditions. The microbiome is often analyzed using 16S rRNA gene sequencing or shotgun metagenomics. However, several properties of microbial sequence-based studies hinder machine learning (ML), including non-uniform representation, a small number of samples compared with the dimension of each sample, and sparsity of the data, with the majority of taxa present in a small subset of samples. We show here using a graph representation that the cladogram structure is as informative as the taxa frequency. We then suggest a novel method to combine information from different taxa and improve data representation for ML using microbial taxonomy. iMic (image microbiome) translates the microbiome to images through an iterative ordering scheme, and applies convolutional neural networks to the resulting image. We show that iMic has a higher precision in static microbiome gene sequence-based ML than state-of-the-art methods. iMic also facilitates the interpretation of the classifiers through an explainable artificial intelligence (AI) algorithm to iMic to detect taxa relevant to each condition. iMic is then extended to dynamic microbiome samples by translating them to movies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Inteligência Artificial , RNA Ribossômico 16S/genética , Microbiota/genética , Aprendizado de Máquina
19.
Microbiol Spectr ; : e0146323, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565758

RESUMO

Accumulating evidence supports the role of microbiota in autoimmune processes, but research regarding the role of the gut microbiota in celiac disease (CD) is still emerging, and a consistent CD-associated dysbiosis pattern has not yet been defined. Here, we characterized the microbiota of children newly diagnosed with CD, with their unaffected family members as a healthy control group to reduce confounding factors including genetic background, hygiene, dietary habits, and environment, and followed children with CD over 1 year of dietary intervention (exclusion of gluten) to understand if the microbiota is associated with CD and its mediation. We did not find differences in the microbiota of siblings with and without CD, despite a wealth of evidence in the literature supporting CD-specific microbiota. CD is common among first-degree relatives, so this could suggest that unaffected family members in this study may be living in a pre-CD state, currently below clinical detection. Interestingly, despite the effectiveness of diet in CD control, we did not observe diet-mediated microbiota changes, except for short-term increase in Akkermansia muciniphila. This lack of effect could suggest a very strong CD microbial signature even when controlled or could be a technical shortcoming. Expanded future studies with both related and unrelated controls and diet interventions in both the CD and control arms can provide further context to our findings. IMPORTANCE The microbiota is the community of microbes that live in and on us. These microbes are essential to our health and everyday function. Disruption of the community is associated with diseases ranging from metabolic syndrome to autoimmune diseases to mental disorders. In the case of celiac disease (CD), research remains inconclusive regarding implications of the microbiota in etiology. Here, we compared microbiota of children with CD to those of their unaffected family members and found very few differences in microbiota profiles. We next examined how gluten elimination in CD patients affects the microbiota. Surprisingly, despite diet adherence, microbiota shifts were minimal, with only a short-term increase in Akkermansia muciniphila. Previous studies suggest that family members of CD patients may be living in a pre-CD state, which could explain their microbial similarity. A larger study with unrelated controls and increased microbiota monitoring during diet intervention should give our findings more perspective.

20.
Mol Ecol Resour ; 23(2): 359-367, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36039836

RESUMO

In ecological and conservation studies, responsible researchers strive to obtain rich data while minimizing disturbance to wildlife and ecosystems. We assessed if samples collected noninvasively can be used for faecal microbiome research, comparing microbiota of noninvasively collected faecal samples to those collected from trapped common cranes at the same sites over the same periods. We found significant differences in faecal microbial composition (alpha and beta diversity), which likely did not result from noninvasive sample exposure to soil contaminants, as assessed by comparing bacterial oxygen use profiles. Differences might result from trapped birds' exposure to sedatives or stress. We conclude that if all samples are collected in the same manner, comparative analyses are valid, and noninvasive sampling may better represent host faecal microbiota because there are no trapping effects. Experiments with fresh and delayed sample collection can elucidate effects of environmental exposures on microbiota. Further, controlled tests of stressing or sedation may unravel how trapping affects wildlife microbiota.


Assuntos
Animais Selvagens , Microbiota , Animais , Fezes/microbiologia , Aves , Bactérias/genética , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA