Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 54(8): 1984-2006, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25968375

RESUMO

The NASA Ocean Biology Processing Group (OBPG) developed two independent calibrations of the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate resolution reflective solar bands using solar diffuser measurements and lunar observations, and implemented a combined solar- and lunar-based calibration to track temporal changes in radiometric response of the instrument. Differences between the solar and lunar data sets have been used to identify issues and verify improvements in each. Linearization of the counts-to-radiance conversion yields a more consistent calibration at low radiance levels. Correction of a recently identified error in the VIIRS solar unit vector coordinate frame has been incorporated into the solar data and diffuser screen transmission functions. Temporal trends in the solar diffuser stability monitor data have been evaluated and addressed. Fits to the solar calibration time series show mean residuals per band of 0.067%-0.17%. Periodic residuals in the VIIRS lunar data are confirmed to arise from a wavelength-dependent libration effect for the sub-spacecraft point in the output of the U.S. Geological Survey Robotic Lunar Observatory photometric model of the Moon. Temporal variations in the relative spectral responses for each band have been assessed, and significant impact on band M1 (412 nm) lunar data has been identified and rectified. Fits to the lunar calibration time series, incorporating sub-spacecraft point libration corrections, show mean residuals per band of 0.069%-0.20%. Lunar calibrations have been used to adjust the solar-derived radiometric corrections for bands M1, M3, and M4. After all corrections, the relative differences in the solar and lunar calibrations for bands M1-M7 are 0.093%-0.22%. The OBPG has achieved a radiometric stability for the VIIRS on-orbit calibration that is commensurate with those achieved for SeaWiFS and Aqua MODIS, supporting the incorporation of VIIRS data into the long-term NASA ocean color data record.

2.
J Geophys Res Oceans ; 120(9): 6508-6541, 2015 09.
Artigo em Inglês | MEDLINE | ID: mdl-27668139

RESUMO

We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity seasons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic-relevant parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA