Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063115

RESUMO

Tulipa L. is a genus of significant economic, environmental, and cultural importance in several parts of the world. The exact number of species in the genus remains uncertain due to inherent taxonomic challenges. We utilized next-generation sequencing technology to sequence and assemble the plastid genomes of seven Tulipa species collected in Kazakhstan and conducted a comparative analysis. The total number of annotated genes was 136 in all seven studied Tulipa species, 114 of which were unique, including 80 protein-coding, 30 tRNA, and 4 rRNA genes. Nine regions (petD, ndhH, ycf2-ycf3, ndhA, rpl16, clpP, ndhD-ndhF, rpoC2, and ycf1) demonstrated significant nucleotide variability, suggesting their potential as molecular markers. A total of 1388 SSRs were identified in the seven Tulipa plastomes, with mononucleotide repeats being the most abundant (60.09%), followed by dinucleotide (34.44%), tetranucleotide (3.90%), trinucleotide (1.08%), pentanucleotide (0.22%), and hexanucleotide (0.29%). The Ka/Ks values of the protein-coding genes ranged from 0 to 3.9286, with the majority showing values <1. Phylogenetic analysis based on a complete plastid genome and protein-coding gene sequences divided the species into three major clades corresponding to their subgenera. The results obtained in this study may contribute to understanding the phylogenetic relationships and molecular taxonomy of Tulipa species.


Assuntos
Genomas de Plastídeos , Filogenia , Tulipa , Tulipa/genética , Tulipa/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , RNA de Transferência/genética
2.
BMC Plant Biol ; 17(Suppl 1): 177, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29143601

RESUMO

BACKGROUND: Sand rice (Agriophyllum squarrosum (L.) Moq.) is an annual shrub-like plant adapted to the mobile sand dunes in desert and semi-desert regions of Asia. It has a balanced nutrient composition with relatively high concentration of lipids and proteins, which results in its nutrition being similar to legumes. Sand rice's proteins contain the full range of essential amino acids. However, calories content is more similar to wheat. These features together with desert stress resistance make sand rice a potential food crop resilient to ongoing climate change. It is also an important fodder crop (on young stages of growth) for cattle in arid regions of Kazakhstan. In our work, sand rice samples were collected from two distant regions of Kazakhstan as a part of the nation-wide project to determine genetic variation of the native flora. RESULTS: Samples were collected in western and southeastern parts of Kazakhstan separated by distances of up to 1300 km. Sequences of the nuclear ribosomal DNA ITS1-5.8S-ITS2 region and the chloroplast matK gene confirmed the identity of species defined by morphological traits. Comparison with GenBank sequences revealed polymorphic sequence positions among Kazakh populations and GenBank references, and suggested a distinction among local populations of sand rice. The phylogenetic analysis of nucleotide sequences showed a clear partition of A. squarrosum (L.) Moq. from Agriophyllum minus Fisch. & C.A. Mey, which grows in the same sand dunes environment. CONCLUSIONS: DNA barcoding analyses of ITS and matK sequences showed a segregation of A. squarrosum from A. minus into separate clades in Maximum-Likelhood dendrograms. ITS analysis can be successfully used to characterize A. squarrosum populations growing quite distant from each other. The data obtained in this work provide the basis for further investigations on A. squarrosum population structure and may play a role in the screening of sand rice plants growing in desert and semi-desert environments of Central Asia and China.


Assuntos
Chenopodiaceae/classificação , Chenopodiaceae/anatomia & histologia , Chenopodiaceae/genética , Código de Barras de DNA Taxonômico , DNA de Cloroplastos , DNA de Plantas , DNA Espaçador Ribossômico , Genes de Plantas , Variação Genética , Cazaquistão , Especificidade da Espécie
3.
BMC Plant Biol ; 17(Suppl 2): 258, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297332

RESUMO

BACKGROUND: As part of nation-wide project to infer the genetic variation of the native flora in Kazakhstan, a study was attempted to assess phylogenetic relationships of endemic and rare Allium species. In total, 20 Allium species were collected in field trips in five different regions of Kazakhstan during 2015-2016. Most species (9) were collected in the southern part of the country along of Karatau mountains, followed by Altai mountains (5) in eastern Kazakhstan. The ITS and matK DNA regions were applied in order to assess the taxonomic relationships among species. The major goal of the study was to assess the taxonomic position of five endemic and rare species from Allium subgenus Reticulatobulbosa collected in Karatau mountains of Southern Kazakhstan. RESULTS: The 20 collected Allium species were assessed using morphological traits and a DNA barcoding approach. The morphological analyses of four different species in subgenus Reticulatobulbosa inferred similarities of A. inconspicuum and A. barszchewskii (both from section Companulata) that were separated from A. oreoscordum and A. oreoprasoides (section Nigrimontana) by several traits, including form of bulbs and leaves, presence of bracts, shape of perianth lobes and style. The Neighbor-Joining method was applied to generate ITS and matK phylogenetic trees for two groups of populations: 1) 20 Allium species collected within the project, and 2) 50 Allium worldwide species. CONCLUSIONS: The analyses of nucleotide sequences of ITS and matK robustly confirmed the monophyletic origin of the Allium species. The variability in 20 local Allium species in ITS was 6.6 higher than in matK, therefore the topology of the ITS tree was better resolved. The taxonomy of Allium species largely coincided with a recent classification of this genus. Analyses of both ITS and matK suggest that A. oreoscordum is genetically close to A. oreoprasoides in section Nigrimontana of subgenus Reticulatobulbosa. This result was also confirmed using morphological description of individual plants of four species in subgenus Reticulatobulbosa. The study is another contribution to taxonomy clarification in Allium.


Assuntos
Allium/classificação , DNA Intergênico/genética , Allium/genética , Classificação , DNA de Plantas/genética , Marcadores Genéticos/genética , Variação Genética/genética , Cazaquistão , Filogenia , Plastídeos/genética , Pirimidinas
4.
BMC Plant Biol ; 17(Suppl 1): 179, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29143671

RESUMO

BACKGROUND: In recent years soybean is becoming one of the most important oilseed crops in Kazakhstan. Only within the last ten years (2006-2016), the area under soybean is expanded from 45 thousand hectares (ha) in 2006 to 120 thousand ha in 2016. The general trend of soybean expansion is from south-eastern to eastern and northern regions of the country, where average temperatures are lower and growing seasons are shorter. These new soybean growing territories were poorly examined in terms of general effects on productivity level among the diverse sample of soybean accessions. In this study, phenotypic data were collected in three separate regions of Kazakhstan and entire soybean sample was genotyped for identification of marker-trait associations (MTA). RESULTS: In this study, the collection of 113 accessions representing five different regions of the World was planted in 2015-2016 in northern, eastern, and south-eastern regions of Kazakhstan. It was observed that North American accessions showed the highest yield in four out of six trials especially in Northern Kazakhstan in both years. The entire sample was genotyped with 6 K SNP Illumina array. 4442 SNPs found to be polymorphic and were used for whole genome genotyping purposes. Obtained SNP markers data and field data were used for GWAS (genome-wide association study). 30 SNPs appear to be very significant in 42 MTAs in six studied environments. CONCLUSIONS: The study confirms the efficiency of GWAS for the identification of molecular markers which tag important agronomic traits. Overall thirty SNP markers associated with time to flowering and maturation, plant height, number of fertile nodes, seeds per plant and yield were identified. Physical locations of 32 identified out of 42 total MTAs coincide well with positions of known analogous QTLs. This result indicates importance of revealed MTAs for soybean growing regions in Kazakhstan. Obtained results would serve as required prerequisite for forming and realization of specific breeding programs towards effective adaptation and increased productivity of soybean in three different regions of Kazakhstan.


Assuntos
Glycine max/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Cromossomos de Plantas , Interação Gene-Ambiente , Marcadores Genéticos , Genoma de Planta , Estudo de Associação Genômica Ampla , Cazaquistão , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
5.
BMC Plant Biol ; 17(Suppl 1): 190, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29143598

RESUMO

BACKGROUND: Spring wheat is the largest agricultural crop grown in Kazakhstan with an annual sowing area of 12 million hectares in 2016. Annually, the country harvests around 15 million tons of high quality grain. Despite environmental stress factors it is predicted that the use of new technologies may lead to increases in productivity from current levels of 1.5 to up to 3 tons per hectare. One way of improving wheat productivity is by the application of new genomic oriented approaches in plant breeding projects. Genome wide association studies (GWAS) are emerging as powerful tools for the understanding of the inheritance of complex traits via utilization of high throughput genotyping technologies and phenotypic assessments of plant collections. In this study, phenotyping and genotyping data on 194 spring wheat accessions from Kazakhstan, Russia, Europe, and CIMMYT were assessed for the identification of marker-trait associations (MTA) of agronomic traits by using GWAS. RESULTS: Field trials in Northern, Central and Southern regions of Kazakhstan using 194 spring wheat accessions revealed strong correlations of yield with booting date, plant height, biomass, number of spikes per plant, and number of kernels per spike. The accessions from Europe and CIMMYT showed high breeding potential for Southern and Central regions of the country in comparison with the performance of the local varieties. The GGE biplot method, using average yield per plant, suggested a clear separation of accessions into their three breeding origins in relationship to the three environments in which they were evaluated. The genetic variation in the three groups of accessions was further studied using 3245 polymorphic SNP (single nucleotide polymorphism) markers. The application of Principal Coordinate analysis clearly grouped the 194 accessions into three clades according to their breeding origins. GWAS on data from nine field trials allowed the identification of 114 MTAs for 12 different agronomic traits. CONCLUSIONS: Field evaluation of foreign germplasm revealed its poor yield performance in Northern Kazakhstan, which is the main wheat growing region in the country. However, it was found that EU and CIMMYT germplasm has high breeding potential to improve yield performance in Central and Southern regions. The use of Principal Coordinate analysis clearly separated the panel into three distinct groups according to their breeding origin. GWAS based on use of the TASSEL 5.0 package allowed the identification of 114 MTAs for twelve agronomic traits. The study identifies a network of key genes for improvement of yield productivity in wheat growing regions of Kazakhstan.


Assuntos
Genes de Plantas , Triticum/genética , Marcadores Genéticos , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Cazaquistão , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento
6.
BMC Plant Biol ; 16 Suppl 1: 6, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26821649

RESUMO

BACKGROUND: Stem rust (SR) is one of the most economically devastating barley diseases in Kazakhstan, and in some years it causes up to 50 % of yield losses. Routine conventional breeding for resistance to stem rust is almost always in progress in all Kazakhstan breeding stations. However, molecular marker based approach towards new SR resistance genes identification and relevant marker-assisted selection had never been employed in Kazakhstan yet. In this study, as a preliminary step the GWAS (genome-wide association study) mapping was applied in attempt to identify reliable SNP markers and quantitative trait loci (QTL) associated with resistance to SR. RESULTS: Barley collection of 92 commercial cultivars and promising lines was genotyped using a high-throughput single nucleotide polymorphism (9,000 SNP) Illumina iSelect array. 6,970 SNPs out of 9,000 total were polymorphic and scorable. 5,050 SNPs out of 6,970 passed filtering threshold and were used for association mapping (AM). All 92 accessions were phenotyped for resistance to SR by observing adult plants in artificially infected plots at the Research Institute for Biological Safety Problems in Dzhambul region of Kazakhstan. GLM analysis allowed the identification of 15 SNPs associated with the resistance at the heading time (HA) phase, and 2 SNPs at the seed's milky-waxy maturity (SM) phase. However, after application of 5 % Bonferroni multiple test correction, only 2 SNPs at the HA stage on the same position of chromosome 6H can be claimed as reliable markers for SR resistance. The MLM analysis after the Bonferroni correction did not reveal any associations in this study, although distribution lines in the quantile-quantile (QQ) plot indicates that overcorrection in the test due to both Q and K matrices usage. CONCLUSIONS: Obtained data suggest that genome wide genotyping of 92 spring barley accessions from Kazakhstan with 9 K Illumina SNP array was highly efficient. Linkage disequilibrium based mapping approach allowed the identification of highly significant QTL for the SR resistance at the HA phase of growth on chromosome 6H. On the other hand, no significant QTL was detected at the SM phase, assuming that for a successful GWASmapping experiment a larger size population with more diverse genetic background should be tested. Obtained results provide additional information towards better understanding of SR resistance in barley.


Assuntos
Genoma de Planta , Estudo de Associação Genômica Ampla , Hordeum/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Basidiomycota/fisiologia , Marcadores Genéticos , Hordeum/microbiologia , Caules de Planta , Polimorfismo de Nucleotídeo Único
7.
Breed Sci ; 64(4): 399-403, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25914595

RESUMO

The wild ancestral form of barley, Hordeum vulgare ssp. spontaneum, is a valuable source for gene enrichment of cultivated barley. The purpose of this work was to study the area of distribution as well as the extent and structure of genetic variation of wild barley populations grown in Kazakhstan. It was found that distribution of wild barley populations in Kazakhstan is restricted to the most southern province. A genome wide single nucleotide polymorphism (SNP) analysis was performed in order to study the level of the genetic diversity in 96 accessions representing 14 wild barley populations from Kazakhstan and 25 accessions from the Middle East which is the center of diversity of this subspecies. The oligonucleotide pooled assay was used to genotype 384 SNPs distributed throughout the genome. In total 233 polymorphic SNPs were selected for further statistical analysis. The level of genetic diversity of wild barley populations from Kazakhstan was predictably narrower (He = 0.19 ± 0.01) in comparison with wild barley samples from the Middle East (He = 0.29 ± 0.01). The results suggested that H. vulgare ssp. spontaneum populations in Kazakhstan probably represent a recent spread of a limited number of plants from the primary distribution area and might be well adapted to winter low temperature.

8.
Plants (Basel) ; 13(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39339597

RESUMO

This study evaluated 290 recombinant inbred lines (RILs) of the nested association mapping (NAM) population from the UK. The population derived from 24 families, where a common parent was "Paragon," one of the UK's spring wheat cultivar standards. All genotypes were tested in two regions of Kazakhstan at the Kazakh Research Institute of Agriculture and Plant Industry (KRIAPI, Almaty region, Southeast Kazakhstan, 2019-2022 years) and Alexandr Barayev Scientific-Production Center for Grain Farming (SPCGF, Shortandy, Akmola region, Northern Kazakhstan, 2019-2022 years). The studied traits consisted of plant adaptation-related traits, including heading date (HD, days), seed maturation date (SMD, days), plant height (PH, cm), and peduncle length (PL, cm). In addition, the yield per m2 was analyzed in both regions. Based on a field evaluation of the population in northern and southeastern Kazakhstan and using 10,448 polymorphic SNP (single-nucleotide polymorphism) markers, the genome-wide association study (GWAS) allowed for detecting 74 QTLs in four studied agronomic traits (HD, SMD, PH, and PL). The literature survey suggested that 16 of the 74 QTLs identified in our study had also been detected in previous QTL mapping studies and GWASs for all studied traits. The results will be used for further studies related to the adaptation and productivity of wheat in breeding projects for higher grain productivity.

9.
Plants (Basel) ; 13(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39339642

RESUMO

The genus Tulipa L., renowned for its ornamental and ecological significance, encompasses a diversity of species primarily concentrated in the Tian Shan and Pamir-Alay Mountain ranges. With its varied landscapes, Kazakhstan harbors 42 Tulipa species, including the endangered Tulipa alberti Regel and Tulipa greigii Regel, which are critical for biodiversity yet face significant threats from human activities. This study aimed to assess these two species' genetic diversity and population structure using 15 expressed sequence tag simple sequence repeat (EST-SSR) markers. Leaf samples from 423 individuals across 23 natural populations, including 11 populations of T. alberti and 12 populations of T. greigii, were collected and genetically characterized using EST-SSR markers. The results revealed relatively high levels of genetic variation in T. greigii compared to T. alberti. The average number of alleles per locus was 1.9 for T. alberti and 2.8 for T. greigii. AMOVA indicated substantial genetic variation within populations (75% for T. alberti and 77% for T. greigii). The Bayesian analysis of the population structure of the two species indicated an optimal value of K = 3 for both species, splitting all sampled populations into three distinct genetic clusters. Populations with the highest level of genetic diversity were identified in both species. The results underscore the importance of conserving the genetic diversity of Tulipa populations, which can help develop strategies for their preservation in stressed ecological conditions.

10.
PLoS One ; 19(1): e0295550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271463

RESUMO

Juniperus species are shrubs or trees in the family Cupressaceae that play an important role in forest ecosystems. In this study, we report the complete sequences of the plastid (pt) genomes of five Juniperus species collected in Kazakhstan (J. communis, J. sibirica, J. pseudosabina, J. semiglobosa, and J. davurica). The sequences of the pt genomes of the five species were annotated in addition to two full pt genome sequences from J. sabina and J. seravschanica, which we have previously reported. The pt genome sequences of these seven species were compared to the pt genomes of Juniperus species available in the public NCBI database. The total length of the pt genomes of Juniperus species, including previously published pt genome data, ranged from 127,469 bp (J. semiglobosa) to 128,097 bp (J. communis). Each Juniperus plastome consisted of 119 genes, including 82 protein-coding genes, 33 transfer RNA and 4 ribosomal RNA genes. Among the identified genes, 16 contained one or two introns, and 2 tRNA genes were duplicated. A comparative assessment of pt genome sequences suggested the identification of 1145 simple sequence repeat markers. A phylogenetic tree of 26 Juniperus species based on the 82 protein-coding genes separated the Juniperus samples into two major clades, corresponding to the Juniperus and Sabina sections. The analysis of pt genome sequences indicated that accD and ycf2 were the two most polymorphic genes. The phylogenetic evaluation of 26 Juniperus species using these two genes confirmed that they can be efficiently used as DNA barcodes for phylogenetic analyses in the genus. The sequenced plastomes of these Juniperus species have provided a large amount of genetic data that will be valuable for future genomic studies of this genus.


Assuntos
Genoma de Cloroplastos , Juniperus , Genoma de Cloroplastos/genética , Juniperus/genética , Filogenia , Cazaquistão , Ecossistema , Repetições de Microssatélites/genética
11.
Plants (Basel) ; 13(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38794403

RESUMO

The family Chenopodiaceae Vent. (Amaranthaceae s.l.) is known for its taxonomic complexity, comprising species of significant economic and ecological importance. Despite its significance, the availability of plastid genome data for this family remains limited. This study involved assembling and characterizing the complete plastid genomes of four Caroxylon Thunb. species within the tribe Salsoleae s.l., utilizing next-generation sequencing technology. We compared genome features, nucleotide diversity, and repeat sequences and conducted a phylogenetic analysis of ten Salsoleae s.l. species. The size of the plastid genome varied among four Caroxylon species, ranging from 150,777 bp (C. nitrarium) to 151,307 bp (C. orientale). Each studied plastid genome encoded 133 genes, including 114 unique genes. This set of genes includes 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Eight divergent regions (accD, atpF, matK, ndhF-ndhG, petB, rpl20-rpl22, rpoC2, and ycf3) were identified in ten Salsoleae s.l. plastid genomes, which could be potential DNA-barcoding markers. Additionally, 1106 repeat elements were detected, consisting of 814 simple sequence repeats, 92 tandem repeats, 88 forward repeats, 111 palindromic repeats, and one reverse repeat. The phylogenetic analysis provided robust support for the relationships within Caroxylon species. These data represent a valuable resource for future phylogenetic studies within the genus.

12.
Biomolecules ; 14(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39199278

RESUMO

The taxonomic classification of the genera Salsola L., Pyankovia Akhani and Roalson, and Xylosalsola Tzvelev within Chenopodiaceae Vent. (Amaranthaceae s.l.) remains controversial, with the precise number of species within these genera still unresolved. This study presents a comparative analysis of the complete plastid genomes of S. foliosa, S. tragus, P. affinis, and X. richteri species collected in Kazakhstan. The assembled plastid genomes varied in length, ranging from 151,177 bp to 152,969 bp for X. richteri and S. tragus. These genomes contained 133 genes, of which 114 were unique, including 80 protein-coding, 30 tRNA, and 4 rRNA genes. Thirteen regions, including ndhC-ndhD, rps16-psbK, petD, rpoC2, ndhA, petB, clpP, atpF, ycf3, accD, ndhF-ndhG, matK, and rpl20-rpl22, exhibited relatively high levels of nucleotide variation. A total of 987 SSRs were detected across the four analyzed plastid genomes, primarily located in the intergenic spacer regions. Additionally, 254 repeats were identified, including 92 tandem repeats, 88 forward repeats, 100 palindromic repeats, and only one reverse repeat. A phylogenetic analysis revealed clear clustering into four clusters corresponding to the Salsoleae and Caroxyloneae tribe clades. These nucleotide sequences obtained in this study represent a valuable resource for future phylogenetic analyses within the Salsoleae s.l. tribe.


Assuntos
Genomas de Plastídeos , Filogenia , Genomas de Plastídeos/genética , Chenopodiaceae/genética , Chenopodiaceae/classificação , Repetições de Microssatélites/genética
13.
PeerJ ; 12: e16735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223754

RESUMO

Background: Genetic differences between isolated endemic populations of plant species and those with widely known twin species are relevant for conserving the biological diversity of our planet's flora. Prunus ledebouriana (Schlecht.) YY Yao is an endangered and endemic species of shrub almond from central Asia. Few studies have explored this species, which is closely related and morphologically similar to the well-known Prunus tenella Batsch. In this article, we present a comparative analysis of studies of three P. ledebouriana populations and one close population of P. tenella in Eastern Kazakhstan in order to determine the particular geographic mutual replacement of the two species. Methods: The populations were collected from different ecological niches, including one steppe population near Ust-Kamenogorsk (P. tenella) and three populations (P. ledebouriana) in the mountainous area. Estimation of plant height using a t-test suggested a statistically significant difference between the populations and the two species (P < 0.0001). DNA simple sequence repeat (SSR) markers were applied to study the two species' genetic diversity and population structure. Results: A total of 19 polymorphic SSR loci were analyzed, and the results showed that the population collected in mountainous areas had a lower variation level than steppe populations. The highest level of Nei's genetic diversity index was demonstrated in the 4-UK population (0.622) of P. tenella. The lowest was recorded in population 3-KA (0.461) of P. ledebouriana, collected at the highest altitude of the four populations (2,086 meters above sea level). The total genetic variation of P. ledebouriana was distributed 73% within populations and 27% between populations. STRUCTURE results showed that two morphologically similar species diverged starting at step K = 3, with limited population mixing. The results confirmed the morphological and genetic differences between P. tenella and P. ledebouriana and described the level of genetic variation for P. ledebouriana. The study's results proved that the steppe zone and mountain altitude factor between P. tenella and isolated mountain samples of P. ledebouriana.


Assuntos
Prunus dulcis , Prunus , Prunus/genética , Variação Genética/genética , Cazaquistão , Prunus dulcis/genética , Repetições de Microssatélites/genética , Marcadores Genéticos/genética
14.
Plant Divers ; 46(5): 600-610, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39290885

RESUMO

The common walnut (Juglans regia) is one of the most economically important nut trees cultivated worldwide. Despite its importance, no comprehensive evaluation of walnut tree population genetics has been undertaken across the range where it originated, Central Asia. In this study, we investigated the genetic diversity and population structure of 1082 individuals from 46 populations across Central Asia. We found moderate genetic diversity of J. regia across Central Asia, with 46 populations clustered into three groups with a weak relationship between genetic and geographic distance. Our findings reveal that the western Himalaya might be the core region of common walnut genetic diversity in Central Asia and that, except for two populations in Gongliu Wild Walnut Valley, humans might have introduced walnut populations to Xinjiang, China. The observed distribution of the genetic landscape has probably been affected by historical climate fluctuation, breeding system, and prolonged anthropogenic activity. We propose the conservation of the core genetic diversity resources in the western Himalaya and pay special attention to populations from Gongliu in Xinjiang. These findings enhance our understanding of the genetic variation throughout the distribution range of J. regia in Central Asia, which will provide a key prerequisite for evidence-based conservation and management.

15.
Proc Natl Acad Sci U S A ; 107(1): 490-5, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20018663

RESUMO

The cleistogamous flower sheds its pollen before opening, forcing plants with this habit to be almost entirely autogamous. Cleistogamy also provides a means of escape from cereal head blight infection and minimizes pollen-mediated gene flow. The lodicule in cleistogamous barley is atrophied. We have isolated cleistogamy 1 (Cly1) by positional cloning and show that it encodes a transcription factor containing two AP2 domains and a putative microRNA miR172 targeting site, which is an ortholog of Arabidopsis thaliana AP2. The expression of Cly1 was concentrated within the lodicule primordia. We established a perfect association between a synonymous nucleotide substitution at the miR172 targeting site and cleistogamy. Cleavage of mRNA directed by miR172 was detectable only in a noncleistogamous background. We conclude that the miR172-derived down-regulation of Cly1 promotes the development of the lodicules, thereby ensuring noncleistogamy, although the single nucleotide change at the miR172 targeting site results in the failure of the lodicules to develop properly, producing the cleistogamous phenotype.


Assuntos
Flores/fisiologia , Hordeum/fisiologia , MicroRNAs/metabolismo , Proteínas de Plantas/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Hordeum/anatomia & histologia , Hordeum/genética , MicroRNAs/genética , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo Genético , RNA Mensageiro/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
16.
Data Brief ; 46: 108866, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36687154

RESUMO

The species of the genus Juniperus L. play an important role in Kazakhstan forest ecosystems and one of them is Juniperus seravschanica Kom. which has been listed as a rare species in the Red Book of Kazakhstan. The distribution area of J. seravschanica extends from Central Asia (Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan, and Turkmenistan) to northern and eastern Afghanistan, northern Pakistan, Kashmir, southeastern Iran, and Oman. J. seravschanica occurred in the southern part of Kazakhstan along with the ranges Karatau, Talas Alatau, Kyrgyz Alatau, Chu-Ili, Karzhantau, and Ugam. The distribution area of J. seravschanica is constantly decreasing due to intensive logging, forest fires, and excessive cattle grazing. The species has ecological importance in the stabilization of mountain slopes against erosion, for hydrobiological regulation, and as a significant medicinal herb. The species J. excelsa M. Bieb., J. polycarpos K.Koch (var. polycarpos and var. turcomanica R.P.Adams), and J. seravschanica are morphologically very similar with some difficulties in species identification. For a better understanding of the evolutionary relationship of these species in the Juniperus genus, it is important to obtain genetic information on the highly conserved chloroplast (cp) genome. Due to the conserved genomic structure, the cp genome nucleotide sequences are widely used in species distinguishing and reconstructing phylogenetic relationships. Unfortunately, there are no publicly available nucleotide sequences of cp genomes data for J. polycarpos (var. polycarpos and var. turcomanica), J. excelsa and J. seravschanica. We report the de novo assembly of the J. seravschanica chloroplast genome by applying next-generation sequencing technology based on Illumina NovaSeq 6000. The assembled cp genome of J. seravschanica is 127,609 bp in length and contained 118 genes, including 82 protein-coding genes, 32 transfer RNA genes, and 4 ribosomal RNA genes. In total 152 simple sequence repeats were identified in the chloroplast genome sequence of J. seravschanica. The Bioproject (PRJNA883033), Sequence Read Archive (SRR21673293), and GenBank (OL684343) data were deposited at National Center for Biotechnology Information.

17.
Plants (Basel) ; 12(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37376001

RESUMO

Barley (Hordeum vulgare L.) is one of the most produced cereal crops in the world. It has traditionally been used for the production of animal feed and for malting, as well as for human consumption. However, its production is highly affected by biotic stress factors, particularly the fungal pathogen Blumeria graminis (DC.) f. sp. hordei (Bgh), which causes powdery mildew (PM). In this study, a collection of 406 barley accessions from the USA, Kazakhstan, Europe, and Africa were assessed for resistance to PM over a 3-year period in southeastern Kazakhstan. The collection was grown in the field in 2020, 2021, and 2022 and was genotyped using the 9K SNP Illumina chip. A genome-wide association study (GWAS) was conducted to identify the quantitative trait loci (QTLs) associated with PM resistance. As a result, seven QTLs for PM resistance were detected on chromosomes 4H, 5H, and 7H (FDR p-values < 0.05). Genetic positions of two QTLs were similar to those of PM resistance QTLs previously reported in the scientific literature, suggesting that the five remaining QTLs are novel putative genetic factors for the studied trait. Haplotype analysis for seven QTLs revealed three haplotypes which were associated with total PM resistance and one haplotype associated with the high PM severity in the barley collection. Identified QTLs and haplotypes associated with the PM resistance of barley may be used for further analysis, trait pyramiding, and marker-assisted selection.

18.
Plants (Basel) ; 12(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37631172

RESUMO

Juniperus seravschanica Kom. is a species that grows widely in the mountain ranges from Central Asia to Oman. It is an important tree for the formation of shrub-forest massifs in mountainous areas and for draining and fixing soils from middle to high altitudes. A comprehensive study of the species' genetic diversity and population structure is a basic approach to understanding the current status of J. seravschanica resources for the development of future conservation strategies. Samples from 15 populations of J. seravschanica were collected from the mountain ranges of Uzbekistan, Kyrgyzstan, and Kazakhstan. The genetic diversity and population structure of 15 Central Asian populations of J. seravschanica were assessed using 11 polymorphic simple sequence repeat (SSR) markers. Genetic diversity parameters, including the number of alleles (na), the effective number of alleles (ne), Shannon's information index (I), the percentage of polymorphic loci (PPL), Nei's genetic diversity index (Nei), principal coordinate analysis (PCoA), etc., were evaluated. The analysis of 15 J. seravschanica populations based on 11 polymorphic SSRs detected 35 alleles. The average PIC value was 0.432, and the highest value (0.662) was found in the JT_40 marker. Nei's genetic diversity index for the J. seravschanica populations was 0.450, ranging from 0.407 (population 14) to 0.566 (population 4). The analysis of molecular variance (AMOVA) showed that 90.3% of total genetic variation is distributed within the population. Using the alleles of all the populations, the gene flow (Nm) was found to be 4.654. Population structure analysis revealed poor clustering in the studied populations and confirmed our AMOVA results. The output of this work can be efficiently used for the maintenance of the species across the Central Asian region.

19.
Plants (Basel) ; 12(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375859

RESUMO

Despite the importance of winter wheat in Central Asian countries, there are limited reports describing their diversity within this region. In this study, the population structures of 115 modern winter wheat cultivars from four Central Asian countries were compared to germplasms from six other geographic origins using 10,746 polymorphic single-nucleotide polymorphism (SNP) markers. After applying the STRUCTURE package, we found that in terms of the most optimal K steps, samples from Kazakhstan and Kyrgyzstan were grouped together with samples from Russia, while samples from Tajikistan and Uzbekistan were grouped with samples from Afghanistan. The mean value of Nei's genetic diversity index for the germplasm from four groups from Central Asia was 0.261, which is comparable to that of the six other groups studied: Europe, Australia, the USA, Afghanistan, Turkey, and Russia. The Principal Coordinate Analysis (PCoA) showed that samples from Kyrgyzstan, Tajikistan, and Uzbekistan were close to samples from Turkey, while Kazakh accessions were located near samples from Russia. The evaluation of 10,746 SNPs in Central Asian wheat suggested that 1006 markers had opposing allele frequencies. Further assessment of the physical positions of these 1006 SNPs in the Wheat Ensembl database indicated that most of these markers are constituents of genes associated with plant stress tolerance and adaptability. Therefore, the SNP markers identified can be effectively used in regional winter wheat breeding projects for facilitating plant adaptation and stress resistance.

20.
Data Brief ; 45: 108644, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426016

RESUMO

The genus Juniperus L. (Cupressaceae Bartl.) is consisting of about 75 species that are divided into sections Caryocedrus Endlicher, Sabina (Miller) Spach, and Juniperus (syn: sect. Oxycedrus Spach). Juniperus sabina L. from section Sabina is an important shrub for the maintenance of the ecosystem in mountainous regions and a source of medicinal compounds. The species is monoecious, rarely dioecious, and distributed in Europe, Central Asia, China, and Mongolia. The goal of the present study was to sequence and reconstruct the complete chloroplast genome of J. sabina. De novo chloroplast (cp) genome assembly for J. sabina was conducted using Illumina paired-end reads. The assembled cp genome size is 127,646 bp in length and has a typical circular DNA molecule. The genome encodes 118 genes, including 82 protein-coding genes, 32 tRNA genes, and 4 rRNA genes, the overall GC content is 34,36%. The complete cp genome nucleotide sequence of J. sabina was deposited to the NCBI (National Center for Biotechnology Information) under accession number OL467323. The raw data in fastq format was deposited to the NCBI sequence read archive under accession number SRR21515769.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA