RESUMO
Stem cells are capable of unlimited proliferation but can be induced to form brain cells. Factors that specifically regulate human development are poorly understood. We found that human stem cells expressed high levels of the envelope protein of an endogenized human-specific retrovirus (HERV-K, HML-2) from loci in chromosomes 12 and 19. The envelope protein was expressed on the cell membrane of the stem cells and was critical in maintaining the stemness via interactions with CD98HC, leading to triggering of human-specific signaling pathways involving mammalian target of rapamycin (mTOR) and lysophosphatidylcholine acyltransferase (LPCAT1)-mediated epigenetic changes. Down-regulation or epigenetic silencing of HML-2 env resulted in dissociation of the stem cell colonies and enhanced differentiation along neuronal pathways. Thus HML-2 regulation is critical for human embryonic and neurodevelopment, while it's dysregulation may play a role in tumorigenesis and neurodegeneration.
Assuntos
Diferenciação Celular , Retrovirus Endógenos/fisiologia , Neurônios/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Biomarcadores , Diferenciação Celular/genética , Autorrenovação Celular/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Regulação Viral da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Ligação Proteica , Células-Tronco/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas do Envelope Viral/genéticaRESUMO
The apoptotic actions of p53 require its phosphorylation by a family of phosphoinositide-3-kinase-related-kinases (PIKKs), which include DNA-PKcs and ATM. These kinases are stabilized by the TTT (Tel2, Tti1, Tti2) cochaperone family, whose actions are mediated by CK2 phosphorylation. The inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks), of which IP6K2 has been implicated in p53-associated cell death. In the present study we report an apoptotic signaling cascade linking CK2, TTT, the PIKKs, and p53. We demonstrate that IP7, formed by IP6K2, binds CK2 to enhance its phosphorylation of the TTT complex, thereby stabilizing DNA-PKcs and ATM. This process stimulates p53 phosphorylation at serine 15 to activate the cell death program in human cancer cells and in murine B cells.
Assuntos
Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/metabolismo , Caseína Quinase II/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosfatos de Inositol/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linfócitos B/enzimologia , Linfócitos B/patologia , Sítios de Ligação , Proteínas de Transporte/genética , Caseína Quinase II/genética , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Estabilidade Enzimática , Células HCT116 , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Knockout , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/deficiência , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Proteínas Proto-Oncogênicas c-ets/genética , Interferência de RNA , Serina , Transdução de Sinais , Proteínas de Ligação a Telômeros/genética , Transfecção , Proteína Supressora de Tumor p53/genéticaRESUMO
Inositol polyphosphate multikinase (IPMK), the key enzyme for the biosynthesis of higher inositol polyphosphates and phosphatidylinositol 3,4,5-trisphosphate, also acts as a versatile signaling player in regulating tissue growth and metabolism. To elucidate neurobehavioral functions of IPMK, we generated mice in which IPMK was deleted from the excitatory neurons of the postnatal forebrain. These mice showed no deficits in either novel object recognition or spatial memory. IPMK conditional knockout mice formed cued fear memory normally but displayed enhanced fear extinction. Signaling analyses revealed dysregulated expression of neural genes accompanied by selective activation of the mechanistic target of rapamycin (mTOR) regulatory enzyme p85 S6 kinase 1 (S6K1) in the amygdala following fear extinction. The IPMK mutants also manifested facilitated hippocampal long-term potentiation. These findings establish a signaling action of IPMK that mediates fear extinction.
Assuntos
Extinção Psicológica , Medo/psicologia , Memória , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Ativação Enzimática , Deleção de Genes , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Prosencéfalo/fisiologia , Transdução de Sinais , Regulação para CimaRESUMO
Interstitial lung diseases (ILDs) are an intriguing group of pulmonary disorders, which still require the study of epidemiological, genetic, pathophysiological, clinical, and radiological parameters. Pulmonary hypertension (PH) is an underreported complication in interstitial lung diseases which is associated with worse outcome. In our study, we have reported the spectrum of ILDs and estimated the prevalence of pulmonary hypertension among these subjects at a tertiary care centre. A cross-sectional study was performed in which demographical, clinical, radiological, and histological data of subjects with ILD, attending the department of Respiratory Medicine in the University was collected from 1st September 2018 to 31st August 2019. Serological tests were done wherever indicated. Standard criteria along with multidisciplinary opinion were needed to arrive at the final diagnosis. All subjects were screened for pulmonary hypertension via 2-D echocardiography. Mean pulmonary artery pressure ≥20 mmHg was used to define PH. In the defined period, 239 subjects were enrolled (58% females, n=141; mean age 52.38±13.40 years). A tissue diagnosis was obtained in 34% cases. The most common ILD was hypersensitivity pneumonitis (32.2%), followed by autoimmune-ILD (31.4%), idiopathic pulmonary fibrosis (IPF) (15.9%) and sarcoidosis (12.6%), non-IPF idiopathic interstitial pneumonitis (2.1%) and rest 21 (5.9%) subjects were diagnosed as other types of ILD. Pulmonary hypertension was seen in 46.0% of subjects.
Assuntos
Alveolite Alérgica Extrínseca , Hipertensão Pulmonar , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Hipertensão Pulmonar/epidemiologia , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/epidemiologia , Masculino , Pessoa de Meia-IdadeRESUMO
RATIONALE: Inositol polyphosphate multikinase (IPMK) and its major product inositol pentakisphosphate (IP5) regulate a variety of cellular functions, but their role in vascular biology remains unexplored. OBJECTIVE: We have investigated the role of IPMK in regulating angiogenesis. METHODS AND RESULTS: Deletion of IPMK in fibroblasts induces angiogenesis in both in vitro and in vivo models. IPMK deletion elicits a substantial increase of VEGF (vascular endothelial growth factor), which mediates the regulation of angiogenesis by IPMK. The regulation of VEGF by IPMK requires its catalytic activity. IPMK is predominantly nuclear and regulates gene transcription. However, IPMK does not apparently serve as a transcription factor for VEGF. HIF (hypoxia-inducible factor)-1α is a major determinant of angiogenesis and induces VEGF transcription. IPMK deletion elicits a major enrichment of HIF-1α protein and thus VEGF. HIF-1α is constitutively ubiquitinated by pVHL (von Hippel-Lindau protein) followed by proteasomal degradation under normal conditions. However, HIF-1α is not recognized and ubiquitinated by pVHL in IPMK KO (knockout) cells. IP5 reinstates the interaction of HIF-1α and pVHL. HIF-1α prolyl hydroxylation, which is prerequisite for pVHL recognition, is interrupted in IPMK-deleted cells. IP5 promotes HIF-1α prolyl hydroxylation and thus pVHL-dependent degradation of HIF-1α. Deletion of IPMK in mouse brain increases HIF-1α/VEGF levels and vascularization. The increased VEGF in IPMK KO disrupts blood-brain barrier and enhances brain blood vessel permeability. CONCLUSIONS: IPMK, via its product IP5, negatively regulates angiogenesis by inhibiting VEGF expression. IP5 acts by enhancing HIF-1α hydroxylation and thus pVHL-dependent degradation of HIF-1α.
Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosfatos de Inositol/metabolismo , Neovascularização Fisiológica/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Animais , Barreira Hematoencefálica , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteólise , RNA Interferente Pequeno/genética , Organismos Livres de Patógenos Específicos , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismoRESUMO
Huntington's disease (HD) is a progressive neurodegenerative disease caused by a glutamine repeat expansion in mutant huntingtin (mHtt). Despite the known genetic cause of HD, the pathophysiology of this disease remains to be elucidated. Inositol polyphosphate multikinase (IPMK) is an enzyme that displays soluble inositol phosphate kinase activity, lipid kinase activity, and various noncatalytic interactions. We report a severe loss of IPMK in the striatum of HD patients and in several cellular and animal models of the disease. This depletion reflects mHtt-induced impairment of COUP-TF-interacting protein 2 (Ctip2), a striatal-enriched transcription factor for IPMK, as well as alterations in IPMK protein stability. IPMK overexpression reverses the metabolic activity deficit in a cell model of HD. IPMK depletion appears to mediate neural dysfunction, because intrastriatal delivery of IPMK abates the progression of motor abnormalities and rescues striatal pathology in transgenic murine models of HD.
Assuntos
Doença de Huntington/enzimologia , Doença de Huntington/fisiopatologia , Neurônios/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Adulto , Idoso , Animais , Biocatálise , Demografia , Dependovirus/metabolismo , Modelos Animais de Doenças , Estabilidade Enzimática , Feminino , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Atividade Motora , Neostriado/enzimologia , Neostriado/patologia , Neostriado/fisiopatologia , Neurônios/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Mudanças Depois da Morte , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Análise de Sobrevida , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismoRESUMO
BACKGROUND: Human endogenous retroviruses (HERVs) are genomic sequences of retroviral origin which were believed to be integrated into germline chromosomes millions of years ago and account for nearly 8% of the human genome. Although mostly defective and inactive, some of the HERVs may be activated under certain physiological and pathological conditions. While no drugs are designed specifically targeting HERVs, there are a panel of antiretroviral drugs designed against the human immunodeficiency virus and approved by the Federal Drug Administration (FDA). RESULTS: We determined if these antiretroviral drugs may also be effective in inhibiting HERVs. We constructed a plasmid with consensus HERV-K sequence for testing the effect of antiretroviral drugs on HERV-K. We first determined the effects of nucleoside and non-nucleotide reverse transcriptase (RT) inhibitors on HERV-K by product enhanced reverse transcription assay. We found that all RT inhibitors could significantly inhibit HERV-K RT activity. To determine the effects of antiretroviral drugs on HERV-K infection and viral production, we pseudotyped HERV-K with VSV-G and used the pseudotyped HERV-K virus to infect HeLa cells. HERV-K production was measured by quantitative real time polymerase chain reaction. We found that RT inhibitors Abacavir and Zidovudine, and integrase inhibitor Raltegravir could effectively block HERV-K infection and production. However, protease inhibitors were not as effective as RT and integrase inhibitors. CONCLUSIONS: In summary, we identified several FDA approved antiretroviral drugs that can effectively inhibit HERV-K. These antiretrovirals may open new prospects for studying HERV-K pathophysiology and potentially for exploring treatment of diseases in which HERV-K has been implicated.
Assuntos
Antirretrovirais/farmacologia , Retrovirus Endógenos/efeitos dos fármacos , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética , Vesiculovirus/genética , Vesiculovirus/crescimento & desenvolvimentoRESUMO
Inositol polyphosphates containing an energetic pyrophosphate bond are formed primarily by a family of three inositol hexakisphosphate (IP6) kinases (IP6K1-3). The Cullin-RING ubiquitin ligases (CRLs) regulate diverse biological processes through substrate ubiquitylation. CRL4, comprising the scaffold Cullin 4A/B, the E2-interacting Roc1/2, and the adaptor protein damage-specific DNA-binding protein 1, is activated by DNA damage. Basal CRL4 activity is inhibited by binding to the COP9 signalosome (CSN). UV radiation and other stressors dissociate the complex, leading to E3 ligase activation, but signaling events that trigger signalosome dissociation from CRL4 have been unclear. In the present study, we show that, under basal conditions, IP6K1 forms a ternary complex with CSN and CRL4 in which IP6K1 and CRL4 are inactive. UV dissociates IP6K1 to generate IP7, which then dissociates CSN-CRL4 to activate CRL4. Thus, IP6K1 is a novel CRL4 subunit that transduces UV signals to mediate disassembly of the CRL4-CSN complex, thereby regulating nucleotide excision repair and cell death.
Assuntos
Proteínas Culina/metabolismo , Reparo do DNA/efeitos da radiação , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Complexo do Signalossomo COP9 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Morte Celular/efeitos da radiação , Proteínas Culina/genética , Células HEK293 , Humanos , Camundongos , Complexos Multiproteicos/genética , Peptídeo Hidrolases/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Transdução de Sinais/efeitos da radiação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The pattern recognition receptor RIG-I is critical for Type-I interferon production. However, the global regulation of RIG-I signaling is only partially understood. Using a human genome-wide RNAi-screen, we identified 226 novel regulatory proteins of RIG-I mediated interferon-ß production. Furthermore, the screen identified a metabolic pathway that synthesizes the inositol pyrophosphate 1-IP7 as a previously unrecognized positive regulator of interferon production. Detailed genetic and biochemical experiments demonstrated that the kinase activities of IPPK, PPIP5K1 and PPIP5K2 (which convert IP5 to1-IP7) were critical for both interferon induction, and the control of cellular infection by Sendai and influenza A viruses. Conversely, ectopically expressed inositol pyrophosphate-hydrolases DIPPs attenuated interferon transcription. Mechanistic experiments in intact cells revealed that the expression of IPPK, PPIP5K1 and PPIP5K2 was needed for the phosphorylation and activation of IRF3, a transcription factor for interferon. The addition of purified individual inositol pyrophosphates to a cell free reconstituted RIG-I signaling assay further identified 1-IP7 as an essential component required for IRF3 activation. The inositol pyrophosphate may act by ß-phosphoryl transfer, since its action was not recapitulated by a synthetic phosphonoacetate analogue of 1-IP7. This study thus identified several novel regulators of RIG-I, and a new role for inositol pyrophosphates in augmenting innate immune responses to viral infection that may have therapeutic applications.
Assuntos
Regulação da Expressão Gênica/imunologia , Interferon Tipo I/imunologia , Monoéster Fosfórico Hidrolases/imunologia , Receptores do Ácido Retinoico/imunologia , Transdução de Sinais/imunologia , Humanos , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/imunologia , RNA Interferente PequenoRESUMO
Inositol polyphosphate multikinase (IPMK) is a notably pleiotropic protein. It displays both inositol phosphate kinase and phosphatidylinositol kinase catalytic activities. Noncatalytically, IPMK stabilizes the mammalian target of rapamycin complex 1 and acts as a transcriptional coactivator for CREB-binding protein/E1A binding protein p300 and tumor suppressor protein p53. Serum response factor (SRF) is a major transcription factor for a wide range of immediate early genes. We report that IPMK, in a noncatalytic role, is a transcriptional coactivator for SRF mediating the transcription of immediate early genes. Stimulation by serum of many immediate early genes is greatly reduced by IPMK deletion. IPMK stimulates expression of these genes, an influence also displayed by catalytically inactive IPMK. IPMK acts by binding directly to SRF and thereby enhancing interactions of SRF with the serum response element of diverse genes.
Assuntos
Genes Precoces/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fator de Resposta Sérica/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Animais , Imunoprecipitação da Cromatina , Primers do DNA/genética , Proteína p300 Associada a E1A/metabolismo , Genes Precoces/genética , Processamento de Imagem Assistida por Computador , Immunoblotting , Camundongos , Camundongos Knockout , Análise em Microsséries , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Profound induction of immediate early genes (IEGs) by neural activation is a critical determinant for plasticity in the brain, but intervening molecular signals are not well characterized. We demonstrate that inositol polyphosphate multikinase (IPMK) acts noncatalytically as a transcriptional coactivator to mediate induction of numerous IEGs. IEG induction by electroconvulsive stimulation is virtually abolished in the brains of IPMK-deleted mice, which also display deficits in spatial memory. Neural activity stimulates binding of IPMK to the histone acetyltransferase CBP and enhances its recruitment to IEG promoters. Interestingly, IPMK regulation of CBP recruitment and IEG induction does not require its catalytic activities. Dominant-negative constructs, which prevent IPMK-CBP binding, substantially decrease IEG induction. As IPMK is ubiquitously expressed, its epigenetic regulation of IEGs may influence diverse nonneural and neural biologic processes.
Assuntos
Encéfalo/metabolismo , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/fisiologia , Genes Precoces/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ativação Transcricional/fisiologia , Análise de Variância , Animais , Proteína de Ligação a CREB/metabolismo , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica/genética , Genes Precoces/genética , Aprendizagem em Labirinto , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Reconhecimento Psicológico/fisiologiaRESUMO
There are no approved pharmacotherapies for fragile X syndrome (FXS), a rare neurodevelopmental disorder caused by a mutation in the FMR1 promoter region that leads to various symptoms, including intellectual disability and auditory hypersensitivity. The gene that encodes inhibitory serotonin 1A receptors (5-HT1ARs) is differentially expressed in embryonic brain tissue from individuals with FXS, and 5-HT1ARs are highly expressed in neural systems that are disordered in FXS, providing a rationale to focus on 5-HT1ARs as targets to treat symptoms of FXS. We examined agonist-labeled 5-HT1AR densities in male and female Fmr1 knockout mice and found no differences in whole-brain 5-HT1AR expression in adult control compared to Fmr1 knockout mice. However, juvenile Fmr1 knockout mice had lower whole-brain 5-HT1AR expression than age-matched controls. Consistent with these results, juvenile Fmr1 knockout mice showed reduced behavioral responses elicited by the 5-HT1AR agonist (R)-8-OH-DPAT, effects blocked by the selective 5-HT1AR antagonist, WAY-100635. Also, treatment with the selective 5-HT1AR agonist, NLX-112, dose-dependently prevented audiogenic seizures (AGS) in juvenile Fmr1 knockout mice, an effect reversed by WAY-100635. Suggestive of a potential role for 5-HT1ARs in regulating AGS, compared to males, female Fmr1 knockout mice had a lower prevalence of AGS and higher expression of antagonist-labeled 5-HT1ARs in the inferior colliculus and auditory cortex. These results provide preclinical support that 5-HT1AR agonists may be therapeutic for young individuals with FXS hypersensitive to auditory stimuli.
Assuntos
Epilepsia Reflexa , Síndrome do Cromossomo X Frágil , Colículos Inferiores , Animais , Feminino , Masculino , Camundongos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Colículos Inferiores/metabolismo , Camundongos Knockout , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , SerotoninaRESUMO
The persistent morbidity and mortality associated with tuberculosis (TB), despite our continued efforts, has been long recognized, and the rise in the incidence of drug-resistant TB adds to the preexisting concern. The bulk of the TB burden is confined to low-income countries, and rigorous efforts are made to detect, notify, and systematically treat TB. Efforts have been infused with renewed vigor and determination by the World Health Organization (WHO) to eliminate tuberculosis in the near future. Different health agencies worldwide are harvesting all possible strategies apart from consolidating ongoing practices, including prevention of the development of active disease by treating latent TB infection (LTBI). The guidelines for the same were already provided by the WHO and were then adapted in the Indian guidelines for the treatment of LTBI in 2021. While the long-term impact of TBI treatment is awaited, in this article, we aim to discuss the implications in the Indian context.
RESUMO
Structure-activity studies of 4-substituted-2,5-dimethoxyphenethylamines led to the discovery of 2,5-dimethoxy-4-thiotrifluoromethylphenethylamines, including CYB210010, a potent and long-acting serotonin 5-HT2 receptor agonist. CYB210010 exhibited high agonist potency at 5-HT2A and 5-HT2C receptors, modest selectivity over 5-HT2B, 5-HT1A, 5-HT6, and adrenergic α2A receptors, and lacked activity at monoamine transporters and over 70 other proteins. CYB210010 (0.1-3 mg/kg) elicited a head-twitch response (HTR) and could be administered subchronically at threshold doses without behavioral tolerance. CYB210010 was orally bioavailable in three species, readily and preferentially crossed into the CNS, engaged frontal cortex 5-HT2A receptors, and increased the expression of genes involved in neuroplasticity in the frontal cortex. CYB210010 represents a new tool molecule for investigating the therapeutic potential of 5-HT2 receptor activation. In addition, several other compounds with high 5-HT2A receptor potency, yet with little or no HTR activity, were discovered, providing the groundwork for the development of nonpsychedelic 5-HT2A receptor ligands.
Assuntos
Fenetilaminas , Agonistas do Receptor 5-HT2 de Serotonina , Relação Estrutura-Atividade , Animais , Humanos , Fenetilaminas/farmacologia , Fenetilaminas/química , Fenetilaminas/síntese química , Administração Oral , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/síntese química , Masculino , Disponibilidade Biológica , Ratos , Camundongos , Ratos Sprague-Dawley , Descoberta de Drogas , Receptores 5-HT2 de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismoRESUMO
BACKGROUND: The etiology and immunopathology of multiple sclerosis (MS) is not well understood. It is recognized that although autoreactive T cells are the main early mediators of disease, other cell types, including cells of the innate immune system contribute to MS pathogenesis. The objective of this study was to determine if Toll-like receptor (TLR) signaling is functionally altered in patients with MS. FINDINGS: Peripheral blood mononuclear cells from healthy donors and patients with relapsing remitting MS were stimulated with specific agonists of TLRs 3, 7, 8 and 9. Using quantitative polymerase chain reaction transcript levels of tumor necrosis factor-α, interferon-α and interleukin (IL)-12ß were quantified from patients with MS and healthy donors. TLR8-induced production of IL12B transcripts and protein was functionally impaired in patients with MS as compared to healthy controls (P <0.05 and P <0.005, respectively). Patients with MS also expressed lower baseline levels of TLR8 as compared to healthy controls (P <0.05). CONCLUSIONS: TLR8 expression and signaling is impaired in peripheral blood mononuclear cells from patients with MS. This finding suggests that loss of TLR8 signaling may be contributing to autoimmune processes in MS.
Assuntos
Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Receptor 8 Toll-Like/fisiologia , Adulto , Idoso , Citocinas/biossíntese , Feminino , Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Interferon-alfa/metabolismo , Interleucina-12/biossíntese , Interleucina-12/genética , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Monócitos/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Transdução de Sinais/fisiologia , Estimulação Química , Receptor 3 Toll-Like/metabolismo , Receptor 8 Toll-Like/agonistas , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Human immunodeficiency virus (HIV) infection-associated neurocognitive disorders is accompanied with brain atrophy. In these patients, impairment of adult neurogenesis and neurite outgrowth in the hippocampus may contribute to cognitive dysfunction. Although running exercises can enhance neurogenesis and normalize neurite outgrowth, the underlying molecular mechanisms are not well understood. The HIV envelope protein, gp120, has been shown to impair neurogenesis. Using a gp120 transgenic mouse model, we demonstrate that exercise stimulated neural progenitor cell (NPC) proliferation in the hippocampal dentate gyrus and increased the survival rate and generation of newborn cells. However, sustained exercise activity was necessary as the effects were reversed by detraining. Exercise also normalized dendritic outgrowth of neurons. Furthermore, it increased the expression of hippocampal brain-derived neurotrophic factor (BDNF) and normalized hyperactivation of cyclin-dependent kinase 5 (Cdk5). Hyperactivated Cdk5 or gp120 treatment led to aberrant neurite outgrowth and BDNF treatment normalized the neurite outgrowth in NPC cultures. These results suggest that sustained exercise has trophic activity on the neuronal lineage which is mediated by Cdk5 modulation of the BDNF pathway.
Assuntos
Complexo AIDS Demência/genética , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Quinase 5 Dependente de Ciclina/genética , Proteína gp120 do Envelope de HIV/genética , Neuritos/metabolismo , Condicionamento Físico Animal , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Proliferação de Células , Sobrevivência Celular , Quinase 5 Dependente de Ciclina/metabolismo , Giro Denteado/metabolismo , Giro Denteado/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neuritos/patologia , Neurogênese/genética , TransgenesRESUMO
BACKGROUND AND OBJECTIVE: Women with high-risk pregnancies are offered prenatal diagnosis through amniocentesis for cytogenetic analysis of fetal cells. The aim of this study was to evaluate the effectiveness of the rapid fluorescence in situ hybridization (FISH) technique for detecting numerical aberrations of chromosomes 13, 21, 18, X and Y in high-risk pregnancies in an Indian scenario. MATERIALS AND METHODS: A total of 163 samples were received for a FISH and/or a full karyotype for prenatal diagnosis from high-risk pregnancies. In 116 samples both conventional culture techniques for getting karyotype through G-banding techniques were applied in conjunction to FISH test using the AneuVysion kit (Abbott Molecular, Inc.), following standard recommended protocol to compare the both the techniques in our setup. RESULTS: Out of 116 patients, we got 96 normal for the five major chromosome abnormality and seven patients were found to be abnormal (04 trisomy 21, 02 monosomy X, and 01 trisomy 13) and all the FISH results correlated with conventional cytogenetics. To summarize the results of total 163 patients for the major chromosomal abnormalities analyzed by both/or cytogenetics and FISH there were 140 (86%) normal, 9 (6%) cases were abnormal and another 4 (2.5%) cases were suspicious mosaic and 10 (6%) cases of culture failure. The diagnostic detection rate with FISH in 116 patients was 97.5%. There were no false-positive and false-negative autosomal or sex chromosomal results, within our established criteria for reporting FISH signals. CONCLUSION: Rapid FISH is a reliable and prompt method for detecting numerical chromosomal aberrations and has now been implemented as a routine diagnostic procedure for detection of fetal aneuploidy in India.
RESUMO
The serotonergic psychedelic psilocybin shows efficacy in treating neuropsychiatric disorders, though the mechanism(s) underlying its therapeutic effects remain unclear. We show that a similar psychedelic tryptamine, N,N-dipropyltryptamine (DPT), completely prevents audiogenic seizures (AGS) in an Fmr1 knockout mouse model of fragile X syndrome at a 10 mg/kg dose but not at lower doses (3 or 5.6 mg/kg). Despite showing in vitro that DPT is a serotonin 5-HT2A, 5-HT1B, and 5-HT1A receptor agonist (with that rank order of functional potency, determined with TRUPATH Gα/ßγ biosensors), pretreatment with selective inhibitors of 5-HT2A/2C, 5-HT1B, or 5-HT1A receptors did not block DPT's antiepileptic effects; a pan-serotonin receptor antagonist was also ineffective. Because 5-HT1A receptor activation blocks AGS in Fmr1 knockout mice, we performed a dose-response experiment to evaluate DPT's engagement of 5-HT1A receptors in vivo. DPT elicited 5-HT1A-dependent effects only at doses greater than 10 mg/kg, further supporting that DPT's antiepileptic effects were not 5-HT1A-mediated. We also observed that the selective sigma1 receptor antagonist, NE-100, did not impact DPT's antiepileptic effects, suggesting DPT engagement of sigma1 receptors was not a crucial mechanism. Separately, we observed that DPT and NE-100 at high doses caused convulsions on their own that were qualitatively distinct from AGS. In conclusion, DPT dose-dependently blocked AGS in Fmr1 knockout mice, but neither serotonin nor sigma1 receptor antagonists prevented this action. Thus, DPT might have neurotherapeutic effects independent of its serotonergic psychedelic properties. However, DPT also caused seizures at high doses, showing that DPT has complex dose-dependent in vivo polypharmacology.
RESUMO
Tuberculosis has been afflicting mankind since times immemorial and yet can still present itself in such a disguised manner that even the bests of experts may be duped. Any site from head to toe can be affected but certain sites are far less common than the others. We came across three inconspicuous manifestations at atypical sites-parapharyngeal abscess, wrist joint and foot ulcer. No other primary site could be identified in any case. Two cases were diagnosed microbiologically and one with radiological evidence. All the three cases were medically managed and depicted positive response.