Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Plant Res ; 132(1): 131-143, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30604175

RESUMO

Bax inhibitor-1 (BI-1) is a widely conserved cell death regulator that confers resistance to environmental stress in plants. Previous studies suggest that Arabidopsis thaliana BI-1 (AtBI-1) modifies sphingolipids by interacting with cytochrome b5 (AtCb5), an electron-transfer protein. To reveal how AtBI-1 regulates sphingolipid synthesis, we screened yeast sphingolipid-deficient mutants and identified yeast ELO2 and ELO3 as novel enzymes that are essential for AtBI-1 function. ELO2 and ELO3 are condensing enzymes that synthesize very-long-chain fatty acids (VLCFAs), major fatty acids in plant sphingolipids. In Arabidopsis, we identified four ELO homologs (AtELO1-AtELO4), localized in the endoplasmic reticulum membrane. Of those AtELOs, AtELO1 and AtELO2 had a characteristic histidine motif and were bound to AtCb5-B. This result suggests that AtBI-1 interacts with AtELO1 and AtELO2 through AtCb5. AtELO2 and AtCb5-B also interact with KCR1, PAS2, and CER10, which are essential for the synthesis of VLCFAs. Therefore, AtELO2 may participate in VLCFA synthesis with AtCb5 in Arabidopsis. In addition, our co-immunoprecipitation/mass spectrometry analysis demonstrated that AtBI-1 forms a complex with AtELO2, KCR1, PAS2, CER10, and AtCb5-D. Furthermore, AtBI-1 contributes to the rapid synthesis of 2-hydroxylated VLCFAs in response to oxidative stress. These results indicate that AtBI-1 regulates VLCFA synthesis by interacting with VLCFA-synthesizing enzymes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Graxos/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Esfingolipídeos/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Esfingolipídeos/metabolismo
2.
Plant Cell ; 26(10): 3949-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25326293

RESUMO

Bud dormancy is an adaptive strategy that perennials use to survive unfavorable conditions. Gentians (Gentiana), popular alpine flowers and ornamentals, produce overwintering buds (OWBs) that can persist through the winter, but the mechanisms regulating dormancy are currently unclear. In this study, we conducted targeted metabolome analysis to obtain clues about the metabolic mechanisms involved in regulating OWB dormancy. Multivariate analysis of metabolite profiles revealed metabolite patterns characteristic of dormant states. The concentrations of gentiobiose [ß-D-Glcp-(1→6)-D-Glc] and gentianose [ß-D-Glcp-(1→6)-D-Glc-(1→2)-d-Fru] significantly varied depending on the stage of OWB dormancy, and the gentiobiose concentration increased prior to budbreak. Both activation of invertase and inactivation of ß-glucosidase resulted in gentiobiose accumulation in ecodormant OWBs, suggesting that gentiobiose is seldom used as an energy source but is involved in signaling pathways. Furthermore, treatment with exogenous gentiobiose induced budbreak in OWBs cultured in vitro, with increased concentrations of sulfur-containing amino acids, GSH, and ascorbate (AsA), as well as increased expression levels of the corresponding genes. Inhibition of GSH synthesis suppressed gentiobiose-induced budbreak accompanied by decreases in GSH and AsA concentrations and redox status. These results indicate that gentiobiose, a rare disaccharide, acts as a signal for dormancy release of gentian OWBs through the AsA-GSH cycle.


Assuntos
Dissacarídeos/metabolismo , Gentiana/metabolismo , Meristema/metabolismo , Metabolômica/métodos , Proteínas de Plantas/metabolismo , Aminoácidos/metabolismo , Ácido Ascórbico/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Dissacarídeos/farmacologia , Dissacarídeos/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gentiana/genética , Gentiana/fisiologia , Glutationa/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Meristema/genética , Meristema/fisiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Metaboloma/genética , Dados de Sequência Molecular , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estações do Ano , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
3.
Plant Cell Physiol ; 57(11): 2427-2439, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27590711

RESUMO

NAD is a well-known co-enzyme that mediates hundreds of redox reactions and is the basis of various processes regulating cell responses to different environmental and developmental cues. The regulatory mechanism that determines the amount of cellular NAD and the rate of NAD metabolism remains unclear. We created Arabidopsis thaliana plants overexpressing the NAD synthase (NADS) gene that participates in the final step of NAD biosynthesis. NADS overexpression enhanced the activity of NAD biosynthesis but not the amounts of NAD+, NADH, NADP+ or NADPH. However, the amounts of some intermediates were elevated, suggesting that NAD metabolism increased. The NAD redox state was greatly facilitated by an imbalance between NAD generation and degradation in response to bolting. Metabolite profiling and transcriptional analysis revealed that the drastic modulation of NAD redox homeostasis increased tricarboxylic acid flux, causing the ectopic generation of reactive oxygen species. Vascular bundles suffered from oxidative stress, leading to a malfunction in amino acid and organic acid transportation that caused early wilting of the flower stalk and shortened plant longevity, probably due to malnutrition. We concluded that the mechanism regulating the balance between NAD synthesis and degradation is important in the systemic plant response to developmental cues during the growth-phase transition.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/fisiologia , Longevidade , NAD/metabolismo , Desenvolvimento Vegetal , Amida Sintases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Coenzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Peróxido de Hidrogênio/metabolismo , Metabolômica , Modelos Biológicos , Oxirredução , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Reprodução
4.
Plant Physiol ; 169(2): 1333-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297139

RESUMO

BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death.


Assuntos
Proteínas de Arabidopsis/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Oryza/fisiologia , Proteínas de Arabidopsis/genética , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Glucosilceramidas/química , Glucosilceramidas/metabolismo , Microdomínios da Membrana/química , Proteínas de Membrana/genética , Oryza/citologia , Oryza/efeitos dos fármacos , Estresse Oxidativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteômica/métodos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Estresse Fisiológico/genética
5.
Plant Cell ; 24(6): 2401-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22715041

RESUMO

The isogamous green alga Chlamydomonas reinhardtii has emerged as a premier model for studying the genetic regulation of fertilization and sexual development. A key regulator is known to be a homeoprotein gene, GAMETE-SPECIFIC PLUS1 (GSP1), which triggers the zygotic program. In this study, we isolated a mutant, biparental31 (bp31), which lacks GSP1. bp31 mt+ gametes fuse normally to form zygotes, but the sexual development of the resulting diploid cell is arrested and pellicle/zygospore/tetrad formation is abolished. The uniparental inheritance of chloroplast (cp) and mitochondrial (mt) DNA (cytoplasmic inheritance) was also impaired. bp31 has a deletion of ∼60 kb on chromosome 2, including GSP1. The mutant phenotype was not rescued by transformation with GSP1 alone but could be rescued by the cotransformation with GSP1 and another gene, INOSITOL MONOPHOSPHATASE-LIKE1, which is involved in various cellular processes, including the phosphatidylinositol signaling pathway. This study confirms the importance of Gsp1 in mediating the zygotic program, including the uniparental inheritance of cp/mtDNA. Moreover, the results also suggest a role for inositol metabolism in the sexual developmental program.


Assuntos
Chlamydomonas reinhardtii/genética , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/genética , Zigoto/crescimento & desenvolvimento , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Herança Extracromossômica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Homeodomínio/genética , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/metabolismo , Deleção de Sequência
6.
Planta ; 239(1): 39-46, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24097264

RESUMO

Arabidopsis cell growth defect factor-1 (Cdf1 in yeast, At5g23040) was originally isolated as a cell growth suppressor of yeast from genetic screening. To investigate the in vivo role of Cdf1 in plants, a T-DNA insertion line was analyzed. A homozygous T-DNA insertion mutant (cdf1/cdf1) was embryo lethal and showed arrested embryogenesis at the globular stage. The Cdf1 protein, when fused with green fluorescent protein, was localized to the plastid in stomatal guard cells and mesophyll cells. A promoter-ß-glucuronidase assay found expression of Cdf1 in the early heart stage of embryogenesis, suggesting that Cdf1 was essential for Arabidopsis embryogenesis during the transition of the embryo from the globular to heart stage.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Transporte/metabolismo , Plastídeos/metabolismo , Proteínas Repressoras/metabolismo , Sementes/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Teste de Complementação Genética , Heterozigoto , Mutação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Repressoras/genética
7.
Planta ; 240(1): 77-89, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687220

RESUMO

Bax inhibitor-1 (BI-1) is a widely conserved cell death suppressor localized in the endoplasmic reticulum membrane. Our previous results revealed that Arabidopsis BI-1 (AtBI-1) interacts with not only Arabidopsis cytochrome b 5 (Cb5), an electron transfer protein, but also a Cb5-like domain (Cb5LD)-containing protein, Saccharomyces cerevisiae fatty acid 2-hydroxylase 1, which 2-hydroxylates sphingolipid fatty acids. We have now found that AtBI-1 binds Arabidopsis sphingolipid Δ8 long-chain base (LCB) desaturases AtSLD1 and AtSLD2, which are Cb5LD-containing proteins. The expression of both AtBI-1 and AtSLD1 was increased by cold exposure. However, different phenotypes were observed in response to cold treatment between an atbi-1 mutant and a sld1sld2 double mutant. To elucidate the reasons behind the difference, we analyzed sphingolipids and found that unsaturated LCBs in atbi-1 were not altered compared to wild type, whereas almost all LCBs in sld1sld2 were saturated, suggesting that AtBI-1 may not be necessary for the desaturation of LCBs. On the other hand, the sphingolipid content in wild type increased in response to low temperature, whereas total sphingolipid levels in atbi-1 were unaltered. In addition, the ceramide-modifying enzymes AtFAH1, sphingolipid base hydroxylase 2 (AtSBH2), acyl lipid desaturase 2 (AtADS2) and AtSLD1 were highly expressed under cold stress, and all are likely to be related to AtBI-1 function. These findings suggest that AtBI-1 contributes to synthesis of sphingolipids during cold stress by interacting with AtSLD1, AtFAH1, AtSBH2 and AtADS2.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Esfingolipídeos/metabolismo , Sequência de Aminoácidos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Ceramidas/metabolismo , Temperatura Baixa , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Oxirredutases , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Esfingolipídeos/análise , Estresse Fisiológico
8.
Plant Physiol ; 162(2): 1153-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23589835

RESUMO

cyAbrB is a transcriptional regulator unique to and highly conserved among cyanobacterial species. A gene-disrupted mutant of cyabrB2 (sll0822) in Synechocystis sp. PCC 6803 exhibited severe growth inhibition and abnormal accumulation of glycogen granules within cells under photomixotrophic conditions. Within 6 h after the shift to photomixotrophic conditions, sodium bicarbonate-dependent oxygen evolution activity markedly declined in the ΔcyabrB2 mutant, but the decrease in methyl viologen-dependent electron transport activity was much smaller, indicating inhibition in carbon dioxide fixation. Decreases in the transcript levels of several genes related to sugar catabolism, carbon dioxide fixation, and nitrogen metabolism were also observed within 6 h. Metabolome analysis by capillary electrophoresis mass spectrometry revealed that several metabolites accumulated differently in the wild-type and mutant strains. For example, the amounts of pyruvate and 2-oxoglutarate (2OG) were significantly lower in the mutant than in the wild type, irrespective of trophic conditions. The growth rate of the ΔcyabrB2 mutant was restored to a level comparable to that under photoautotrophic conditions by addition of 2OG to the growth medium under photomixotrophic conditions. Activities of various metabolic processes, including carbon dioxide fixation, respiration, and nitrogen assimilation, seemed to be enhanced by 2OG addition. These observations suggest that cyAbrB2 is essential for the active transcription of genes related to carbon and nitrogen metabolism upon a shift to photomixotrophic conditions. Deletion of cyAbrB2 is likely to deregulate the partition of carbon between storage forms and soluble forms used for biosynthetic purposes. This disorder may cause inactivation of cellular metabolism, excess accumulation of reducing equivalents, and subsequent loss of viability under photomixotrophic conditions.


Assuntos
Proteínas de Bactérias/genética , Mutação , Synechocystis/genética , Synechocystis/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Metaboloma , Nitrogênio/metabolismo , Fotossíntese/genética , Ácido Pirúvico/metabolismo , Bicarbonato de Sódio/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/crescimento & desenvolvimento
9.
Nature ; 452(7186): 483-6, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18305482

RESUMO

The continuing rise in atmospheric [CO2] is predicted to have diverse and dramatic effects on the productivity of agriculture, plant ecosystems and gas exchange. Stomatal pores in the epidermis provide gates for the exchange of CO2 and water between plants and the atmosphere, processes vital to plant life. Increased [CO2] has been shown to enhance anion channel activity proposed to mediate efflux of osmoregulatory anions (Cl- and malate(2-)) from guard cells during stomatal closure. However, the genes encoding anion efflux channels in plant plasma membranes remain unknown. Here we report the isolation of an Arabidopsis gene, SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1, At1g12480), which mediates CO2 sensitivity in regulation of plant gas exchange. The SLAC1 protein is a distant homologue of bacterial and fungal C4-dicarboxylate transporters, and is localized specifically to the plasma membrane of guard cells. It belongs to a protein family that in Arabidopsis consists of four structurally related members that are common in their plasma membrane localization, but show distinct tissue-specific expression patterns. The loss-of-function mutation in SLAC1 was accompanied by an over-accumulation of the osmoregulatory anions in guard cell protoplasts. Guard-cell-specific expression of SLAC1 or its family members resulted in restoration of the wild-type stomatal responses, including CO2 sensitivity, and also in the dissipation of the over-accumulated anions. These results suggest that SLAC1-family proteins have an evolutionarily conserved function that is required for the maintenance of organic/inorganic anion homeostasis on the cellular level.


Assuntos
Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Homeostase , Proteínas de Membrana/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Proteínas de Membrana/genética , Família Multigênica , Mutação/genética , Especificidade de Órgãos , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação
10.
Proc Natl Acad Sci U S A ; 108(33): 13835-40, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21804028

RESUMO

Nonphotochemical quenching (NPQ) regulates energy conversion in photosystem II and protects plants from photoinhibition. Here we analyze NPQ capacity in a number of rice cultivars. NPQ was strongly induced under medium and high light intensities in rice leaves. Japonica cultivars generally showed higher NPQ capacities than Indica cultivars when we measured a rice core collection. We mapped NPQ regulator and identified a locus (qNPQ1-2) that seems to be responsible for the difference in NPQ capacity between Indica and Japonica. One of the two rice PsbS homologues (OsPsbS1) was found within the qNPQ1-2 region. PsbS protein was not accumulated in the leaf blade of the mutant harboring transferred DNA insertion in OsPsbS1. NPQ capacity increased as OsPsbS1 expression increased in a series of transgenic lines ectopically expressing OsPsbS1 in an Indica cultivar. Indica cultivars lack a 2.7-kb region at the point 0.4 kb upstream of the OsPsbS1 gene, suggesting evolutionary discrimination of this gene.


Assuntos
Transferência de Energia , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Oryza/genética , Complexo de Proteína do Fotossistema II/genética , Loci Gênicos , Complexos de Proteínas Captadores de Luz , Oryza/metabolismo , Folhas de Planta , Proteínas de Plantas/genética , Especificidade da Espécie
11.
Plant Physiol ; 159(3): 1138-48, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22635113

RESUMO

2-Hydroxy fatty acids (2-HFAs) are predominantly present in sphingolipids and have important physicochemical and physiological functions in eukaryotic cells. Recent studies from our group demonstrated that sphingolipid fatty acid 2-hydroxylase (FAH) is required for the function of Arabidopsis (Arabidopsis thaliana) Bax inhibitor-1 (AtBI-1), which is an endoplasmic reticulum membrane-localized cell death suppressor. However, little is known about the function of two Arabidopsis FAH homologs (AtFAH1 and AtFAH2), and it remains unclear whether 2-HFAs participate in cell death regulation. In this study, we found that both AtFAH1 and AtFAH2 had FAH activity, and the interaction with Arabidopsis cytochrome b5 was needed for the sufficient activity. 2-HFA analysis of AtFAH1 knockdown lines and atfah2 mutant showed that AtFAH1 mainly 2-hydroxylated very-long-chain fatty acid (VLCFA), whereas AtFAH2 selectively 2-hydroxylated palmitic acid in Arabidopsis. In addition, 2-HFAs were related to resistance to oxidative stress, and AtFAH1 or 2-hydroxy VLCFA showed particularly strong responses to oxidative stress. Furthermore, AtFAH1 interacted with AtBI-1 via cytochrome b5 more preferentially than AtFAH2. Our results suggest that AtFAH1 and AtFAH2 are functionally different FAHs, and that AtFAH1 or 2-hydroxy VLCFA is a key factor in AtBI-1-mediated cell death suppression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , Oxigenases de Função Mista/metabolismo , Esfingolipídeos/metabolismo , Estresse Fisiológico , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Ésteres/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/farmacologia , Hidroxilação/efeitos dos fármacos , Oxigenases de Função Mista/genética , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
12.
Plant Physiol ; 160(1): 93-105, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22576848

RESUMO

Previously, a dysfunction of the SMALL ACIDIC PROTEIN1 (SMAP1) gene was identified as the cause of the anti-auxin resistant1 (aar1) mutant of Arabidopsis (Arabidopsis thaliana). SMAP1 is involved in the response pathway of synthetic auxin, 2,4-dichlorophenoxyacetic acid, and functions upstream of the auxin/indole-3-acetic acid protein degradation step in auxin signaling. However, the exact mechanism by which SMAP1 functions in auxin signaling remains unknown. Here, we demonstrate that SMAP1 is required for normal plant growth and development and the root response to indole-3-acetic acid or methyl jasmonate in the auxin resistant1 (axr1) mutation background. Deletion analysis and green fluorescent protein/glutathione S-transferase pull-down assays showed that SMAP1 physically interacts with the CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME (CSN) via the SMAP1 F/D region. The extremely dwarf phenotype of the aar1-1 csn5a-1 double mutant confirms the functional role of SMAP1 in plant growth and development under limiting CSN functionality. Our findings suggest that SMAP1 is involved in the auxin response and possibly in other cullin-RING ubiquitin ligase-regulated signaling processes via its interaction with components associated with RELATED TO UBIQUITIN modification.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Ubiquitinas/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacologia , Acetatos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Caulimovirus/genética , Caulimovirus/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Ácidos Indolacéticos/farmacologia , Mutação , Oxilipinas/farmacologia , Fenótipo , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Interferência de RNA , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais , Ubiquitinas/genética
13.
Plant Direct ; 7(9): e529, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37731912

RESUMO

The NAM, ATAF1/2, and CUC2 (NAC) domain transcription factor VND-INTERACTING2 (VNI2) negatively regulates xylem vessel formation by interacting with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel formation. Here, we screened interacting proteins with VNI2 using yeast two-hybrid assay and isolated two NAC domain transcription factors, Arabidopsis thaliana ACTIVATION FACTOR 2 (ATAF2) and NAC DOMAIN CONTAINING PROTEIN 102 (ANAC102). A transient gene expression assay showed that ATAF2 upregulates the expression of genes involved in leaf senescence, and VNI2 effectively inhibits the transcriptional activation activity of ATAF2. vni2 mutants accelerate leaf senescence, whereas ataf2 mutants delay leaf senescence. In addition, the accelerated leaf senescence phenotype of the vni2 mutant is recovered by simultaneous mutation of ATAF2. Our findings strongly suggest that VNI2 interacts with and inhibits ATAF2, resulting in negatively regulating leaf senescence.

14.
Plant Cell Physiol ; 53(3): 577-91, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22318863

RESUMO

When ammonium is the sole nitrogen (N) source, plant growth is suppressed compared with the situation where nitrate is the N source. This is commonly referred to as ammonium toxicity. It is widely known that a combination of nitrate and ammonium as N source alleviates this ammonium toxicity (nitrate-dependent alleviation of ammonium toxicity), but the underlying mechanisms are still not completely understood. In plants, ammonium toxicity is often accompanied by a depletion of organic acids and inorganic cations, and by an accumulation of ammonium. All these factors have been considered as possible causes for ammonium toxicity. Thus, we hypothesized that nitrate could alleviate ammonium toxicity by lessening these symptoms. We analyzed growth, inorganic N and cation content and various primary metabolites in shoots of Arabidopsis thaliana seedlings grown on media containing various concentrations of nitrate and/or ammonium. Nitrate-dependent alleviation of ammonium toxicity was not accompanied by less depletion of organic acids and inorganic cations, and showed no reduction in ammonium accumulation. On the other hand, shoot growth was significantly correlated with the nitrate concentration in the shoots. This suggests that nitrate-dependent alleviation of ammonium toxicity is related to physiological processes that are closely linked to nitrate signaling, uptake and reduction. Based on transcript analyses of various genes related to nitrate signaling, uptake and reduction, possible underlying mechanisms for the nitrate-dependent alleviation are discussed.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Ácidos Carboxílicos/metabolismo , Nitratos/farmacologia , Compostos de Amônio Quaternário/metabolismo , Compostos de Amônio Quaternário/toxicidade , Aminoácidos/biossíntese , Arabidopsis/genética , Biomassa , Soluções Tampão , Cátions , Ciclo do Ácido Cítrico/efeitos dos fármacos , Meios de Cultura , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Glicólise/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Nitrogênio/farmacologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Extratos de Tecidos
15.
Plant Physiol ; 152(4): 1863-73, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20154096

RESUMO

The chloroplastic NAD kinase (NADK2) is reported to stimulate carbon and nitrogen assimilation in Arabidopsis (Arabidopsis thaliana), which is vulnerable to high light. Since rice (Oryza sativa) is a monocotyledonous plant that can adapt to high light, we studied the effects of NADK2 expression in rice by developing transgenic rice plants that constitutively expressed the Arabidopsis chloroplastic NADK gene (NK2 lines). NK2 lines showed enhanced activity of NADK and accumulation of the NADP(H) pool, while intermediates of NAD derivatives were unchanged. Comprehensive analysis of the primary metabolites in leaves using capillary electrophoresis mass spectrometry revealed elevated levels of amino acids and several sugar phosphates including ribose-1,5-bisphosphate, but no significant change in the levels of the other metabolites. Studies of chlorophyll fluorescence and gas change analyses demonstrated greater electron transport and CO2 assimilation rates in NK2 lines, compared to those in the control. Analysis of oxidative stress response indicated enhanced tolerance to oxidative stress in these transformants. The results suggest that NADP content plays a critical role in determining the photosynthetic electron transport rate in rice and that its enhancement leads to stimulation of photosynthesis metabolism and tolerance of oxidative damages.


Assuntos
Arabidopsis/genética , Metaboloma , Oryza/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fotoquímica , Arabidopsis/enzimologia , Eletroforese Capilar , Espectrometria de Massas , Plantas Geneticamente Modificadas
16.
J Biol Chem ; 284(41): 27998-28003, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19674971

RESUMO

Bax inhibitor-1 (BI-1) is a cell death suppressor protein conserved across a variety of organisms. The Arabidopsis atbi1-1 plant is a mutant in which the C-terminal 6 amino acids of the expressed BI-1 protein have been replaced by T-DNA insertion. This mutant BI-1 protein (AtBI-CM) produced in Escherichia coli can no longer bind to calmodulin. A promoter-reporter assay demonstrated compartmentalized expression of BI-1 during hypersensitive response, introduced by the inoculation of Pseudomonas syringae possessing the avrRTP2 gene, Pst(avrRPT2). In addition, both BI-1 knockdown plants and atbi1-1 showed increased sensitivity to Pst(avrRPT2)-induced cell death. The results indicated that the loss of calmodulin binding reduces the cell death suppressor activity of BI-1 in planta.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Calmodulina/metabolismo , Morte Celular/fisiologia , Proteínas de Membrana/metabolismo , Pseudomonas syringae/fisiologia , Sequência de Aminoácidos , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/genética , Calmodulina/classificação , Calmodulina/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Ligação Proteica
17.
Plant J ; 58(1): 122-34, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19054355

RESUMO

Bax inhibitor-1 (BI-1) is a widely conserved cytoprotective protein localized in the endoplasmic reticulum (ER) membrane. We identified Arabidopsis cytochrome b(5) (AtCb5) as an interactor of Arabidopsis BI-1 (AtBI-1) by screening the Arabidopsis cDNA library with the split-ubiquitin yeast two-hybrid (suY2H) system. Cb5 is an electron transfer protein localized mainly in the ER membrane. In addition, a bimolecular fluorescence complementation (BiFC) assay and fluorescence resonance energy transfer (FRET) analysis confirmed that AtBI-1 interacted with AtCb5 in plants. On the other hand, we found that the AtBI-1-mediated suppression of cell death in yeast requires Saccharomyces cerevisiae fatty acid hydroxylase 1 (ScFAH1), which had a Cb5-like domain at the N terminus and interacted with AtBI-1. ScFAH1 is a sphingolipid fatty acid 2-hydroxylase localized in the ER membrane. In contrast, AtFAH1 and AtFAH2, which are functional ScFAH1 homologues in Arabidopsis, had no Cb5-like domain, and instead interacted with AtCb5 in plants. These results suggest that AtBI-1 interacts with AtFAHs via AtCb5 in plant cells. Furthermore, the overexpression of AtBI-1 increased the level of 2-hydroxy fatty acids in Arabidopsis, indicating that AtBI-1 is involved in fatty acid 2-hydroxylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocromos b5/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Arabidopsis/classificação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Morte Celular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/classificação , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Teste de Complementação Genética , Hidroxilação , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
18.
Plant Cell Physiol ; 51(1): 9-20, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19919949

RESUMO

Bax inhibitor-1 (BI-1) is a cell death suppression factor widely conserved in higher plants and animals. Overexpression of Arabidopsis BI-1 (AtBI-1) in plants confers tolerance to various cell death-inducible stresses. However, apart from the cell death-suppressing activity, little is known about the physiological roles of BI-1-overexpressing plants. In this study, we evaluated the effects of AtBI-1 overexpression on the rice metabolome in response to oxidative stress. AtBI-1-overexpressing rice cells in suspension displayed enhanced tolerance to menadione-induced oxidative stress compared with vector control cells, whereas AtBI-1 overexpression did not influence the increase of intracellular H(2)O(2) concentration or inhibition of oxidative stress-sensitive aconitase activity. Capillary electrophoresis-mass spectrometry (CE-MS)-based metabolome analysis revealed dynamic metabolic changes in oxidatively stressed rice cells, e.g. depletion of the central metabolic pathway, imbalance of the redox state and energy charge, and accumulation of amino acids. Furthermore, comparative metabolome analysis demonstrated that AtBI-1 overexpression did not affect primary metabolism in rice cells under normal growth conditions but significantly altered metabolite composition within several distinct pathways under cell death-inducible oxidative stress. The AtBI-1-mediated metabolic alteration included recovery of the redox state and energy charge, which are known as important factors for metabolic defense against oxidative stress. These observations suggest that although AtBI-1 does not affect rice metabolism directly, its cell death suppression activity leads to enhanced capacity to acclimate oxidative stress.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Metaboloma/genética , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo/genética , Adaptação Fisiológica/genética , Aminoácidos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular/genética , Resistência a Medicamentos/genética , Eletroforese Capilar , Metabolismo Energético/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Espectrometria de Massas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oryza/citologia , Oxirredução , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitamina K 3/toxicidade , Vitaminas/toxicidade
19.
Plant Cell Physiol ; 51(5): 810-22, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20304787

RESUMO

Expression of alternative oxidase (AOX) and cyanide (CN)-resistant respiration are often highly enhanced in plants exposed to low-nitrogen (N) stress. Here, we examined the effects of AOX deficiency on plant growth, gene expression of respiratory components and metabolic profiles under low-N stress, using an aox1a knockout transgenic line (aox1a) of Arabidopsis thaliana. We exposed wild-type (WT) and aox1a plants to low-N stress for 7 d and analyzed their shoots and roots. In WT plants, the AOX1a mRNA levels and AOX capacity increased in proportion to low-N stress. Expression of the genes of the components for non-phosphorylating pathways and antioxidant enzymes was enhanced, but differences between WT and aox1a plants were small. Metabolome analyses revealed that AOX deficiency altered the levels of certain metabolites, such as sugars and sugar phosphates, in the shoots under low-N stress. However, the carbon (C)/N ratios and carbohydrate levels in aox1a plants were similar to those in the WT under low-N stress. Our results indicated that the N-limited stress induced AOX expression in A. thaliana plants, but the induced AOX may not play essential roles under stress due to low-N alone, and the C/N balance under low-N stress may be tightly regulated by systems other than AOX.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Nitrogênio/metabolismo , Oxirredutases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Metaboloma , Proteínas Mitocondriais , Oxirredutases/genética , Proteínas de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética
20.
Plant Cell Environ ; 33(11): 1888-97, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20545883

RESUMO

Oxygen uptake rates are increased when concentrated ammonium instead of nitrate is used as sole N source. Several explanations for this increased respiration have been suggested, but the underlying mechanisms are still unclear. To investigate possible factors responsible for this respiratory increase, we measured the O2 uptake rate, activity and transcript level of respiratory components, and concentration of adenylates using Arabidopsis thaliana shoots grown in media containing various N sources. The O2 uptake rate was correlated with concentrations of ammonium and ATP in shoots, but not related to the ammonium assimilation. The capacity of the ATP-coupling cytochrome pathway (CP) and its related genes were up-regulated when concentrated ammonium was sole N source, whereas the ATP-uncoupling alternative oxidase did not influence the extent of the respiratory increase. Our results suggest that the ammonium-dependent increase of the O2 uptake rate can be explained by the up-regulation of the CP, which may be related to the ATP consumption by the plasma-membrane H+ -ATPase.


Assuntos
Arabidopsis/metabolismo , Grupo dos Citocromos c/metabolismo , Consumo de Oxigênio , Compostos de Amônio Quaternário/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Respiração Celular , Grupo dos Citocromos c/genética , Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais , Mutação , Nitratos/metabolismo , Nitrogênio/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA