RESUMO
One strategy to prepare phase-separated co-assembly is to use the existing assembly as a platform to architect structures. For this purpose, the edge of a sheet or tube-shaped molecular assembly, which is less hydrophilic than the bulk region can become a starting point to build assembly units to realize more complex structures. In this study, we succeeded in preparing rod-shaped nanocapsules with previously unachieved sealing efficiency (>99%) by fine-tuning the properties of cationic amphiphilic polypeptides to seal the ends of neutral charge nanotubes. In addition, we demonstrated the nanocapsule's reversible responsiveness to salt. In high salt concentrations, a decrease in electrostatic repulsion between cationic polypeptides caused tearing and shrinking of the nanocapsule's sealing dome, which resulted in an opened nanotube. On the other hand, when salt was removed, the electrostatic repulsion among the cationic peptides localizing on the edge of opened nanocapsules was recovered, and the sealing membrane swelled up like an accordion to create a distance between the peptides, resulting in the restoration of the seal.
Assuntos
Nanocápsulas , Nanotubos de Peptídeos , Nanotubos , Cátions , Interações Hidrofóbicas e Hidrofílicas , Nanotubos/química , Peptídeos/química , Cloreto de SódioRESUMO
The introduction of α-helical structure with a specific helix-helix interaction into an amphipathic molecule enables the determination of the molecular packing in the assembly and the morphological control of peptide assemblies. We previously reported that the amphiphilic polypeptide SL12 with a polysarcosine (PSar) hydrophilic chain and hydrophobic α-helix (l-Leu-Aib)6 involving the LxxxLxxxL sequence, which induces homo-dimerization due to the concave-convex interaction, formed a nanotube with a uniform 80 nm diameter. In this study, we investigated the importance of the LxxxLxxxL sequence for tube formation by comparing amphiphilic polypeptide SL4A4L4 with hydrophobic α-helix (l-Leu-Aib)2-(l-Ala-Aib)2-(l-Leu-Aib)2 and SL12. SL4A4L4 formed spherical vesicles and micelles. The effect of the LxxxLxxxL sequence elongation on tube formation was demonstrated by studying assemblies of PSar-b-(l-Ala-Aib)-(l-Leu-Aib)6-(l-Ala-Aib) (SA2L12A2) and PSar-b-(l-Leu-Aib)8 (SL16). SA2L12A2 formed nanotubes with a uniform 123 nm diameter, while SL16 assembled into vesicles. These results showed that LxxxLxxxL is a necessary and sufficient sequence for the self-assembly of nanotubes. Furthermore, we fabricated a double-layer nanotube by combining two kinds of nanotubes with 80 and 120 nm diameters-SL12 and SA2L12A2. When SA2L12A2 self-assembled in SL12 nanotube dispersion, SA2L12A2 initially formed a rolled sheet, the sheet then wrapped the SL12 nanotube, and a double-layer nanotube was obtained.
Assuntos
Interações Hidrofóbicas e Hidrofílicas , Leucina/química , Nanotubos/química , Peptídeos/química , Sarcosina/análogos & derivados , Modelos Moleculares , Conformação Proteica , Sarcosina/químicaRESUMO
The self-assembly of biological molecules is an important pathway to understanding the molecular basis of complex metabolic events. The presence of a cosolvent in an aqueous solution during the self-assembly process can promote the formation of kinetically trapped metastable intermediates. In nature, a category of cosolvents termed osmolytes can work to strengthen the hydrogen-bond network of water such that the native states of certain proteins are favored, thus modulating their function and stability. However, identifying cosolvents that act as osmolytes in biomimetic applications, such as the self-assembly of soft materials, remains challenging. The present work examined the effects of ethanol (EtOH) and acetonitrile (ACN) as cosolvents on the self-assembly of the amphiphilic polypeptide PSar30-(l-Leu-Aib)6 (S30L12), which incorporates α-helical hydrophobic blocks, in aqueous solution. The results provided a direct observation of morphological behavior of S30L12 as a function of solvent composition. Morphological transitions were investigated using transmission electron microscopy, while the packing of peptide molecules was assessed using circular dichroism analyses and evaluations of membrane fluidity. In the EtOH/H2O mixtures, the EtOH strengthened the hydrogen-bond network of the water, thus limiting the hydrophobic hydration of S30L12 assemblies and enhancing hydrophobic interactions between assemblies. In contrast, ACN formed self-associated nanoclusters in water and at the hydrophobic cores of peptide assemblies to stabilize the edges exposed to bulk water and enhance the assembly kinetics. Fourier transform infrared (FT-IR) analysis indicated that both EtOH and ACN can modify the self-assembly of biomaterials in the same manner as osmolyte protectants or denaturants.
RESUMO
Recent immunotherapies have shown clinical success. In particular, vaccines based on particulate antigen (Ag) are expected to be implemented based on their efficacy. In the current study, we describe a strategy entailing Ag-encapsulating PEG-modified liposomes (PGL-Ag) as antigen protein delivery devices and show that the success of the liposome depends on the antigen-presenting cell (APC) capacity; after administration of PGL-Ag, dendritic cells (DCs) in particular take up the Ag and subsequently prime T cells. For the generation of antitumor T cell responses in the lymphoid tissues, the function of encapsulated Ag-capturing DCs in vivo could be a biomarker. We next designed a prime-boost strategy to enhance the antitumor effects of the PGL-Ag. In the tumor sites, we show that Ag retention in nanoparticle-capturing DCs promotes a robust antitumor response. Thus, this efficient particulate Ag-based host antigen-presenting cell delivery strategy provides a bridge between innate and adaptive immune response and offers a novel therapeutic option against tumor cells.
Assuntos
Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Lipossomos/química , Animais , Biomarcadores Tumorais/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos/métodos , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Linfócitos T/imunologiaRESUMO
Artificial tubular networks are promising structures for biomaterial applications because of their large surface areas. A tubular network was formed by co-assembling two different amphiphilic polypeptides, poly(ethylene glycol)-b-(l-Leu-Aib)6 (PL12) and polysarcosine-b-(l-Leu-Aib)6 (SL12). They both have the same hydrophobic 12-mer helical block (l-Leu-Aib)6 but different hydrophilic chains, poly(ethylene glycol) and polysarcosine. In water, both polypeptides self-assembled into a tubular structure having a uniform 80 nm diameter that was formed by packing among the hydrophobic L12 blocks. The SL12 nanotubes were short (200 nm), straight, and robust. PL12 formed long (>1 µm), bendable, and fusogenic nanotubes. The amphiphiles were then co-assembled with various mixing ratios to form tubular networks. Higher concentrations of PL12 made the nanotubes more bendable and fusogenic between open tube ends, which produced branching junctions under heat treatment.
Assuntos
Nanotubos/química , Peptídeos/química , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis/química , Sarcosina/análogos & derivados , Sarcosina/químicaRESUMO
(1) Background: The folate receptor (FR) is a target for cancer treatment and detection. Expression of the FR is restricted in normal cells but overexpressed in many types of tumors. Folate was conjugated with peptides for enhancing binding affinity to the FR. (2) Materials and Methods: For conjugation, folate was coupled with propargyl or dibenzocyclooctyne, and 4-azidophenylalanine was introduced in peptides for "click" reactions. We measured binding kinetics including the rate constants of association (ka) and dissociation (kd) of folate-peptide conjugates with purified FR by biolayer interferometry. After optimization of the conditions for the click reaction, we successfully conjugated folate with designed peptides. (3) Results: The binding affinity, indicated by the equilibrium dissociation constant (KD), of folate toward the FR was enhanced by peptide conjugation. The enhanced FR binding affinity by peptide conjugation is a result of an increase in the number of interaction sites. (4) Conclusion: Such peptide-ligand conjugates will be important in the design of ligands with higher affinity. These high affinity ligands can be useful for targeted drug delivery system.
Assuntos
Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/análogos & derivados , Alcinos/química , Azidas/química , Química Click/métodos , Ciclo-Octanos/química , Receptores de Folato com Âncoras de GPI/química , Ácido Fólico/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/química , Fenilalanina/análogos & derivados , Fenilalanina/química , Propanóis/química , Ligação ProteicaRESUMO
Hybrid assemblies composed of phospholipids and amphiphilic polymers have been investigated previously as a biomimetic model of biological cells. However, these studies focused on the functions of polymers in a sea of membrane lipids. Here, we prepared a highly stable peptide-lipid hybrid vesicle from a combination of an amphiphilic polypeptide and the phospholipid, 1,2-dimyristoyl- sn-glycero-3-phosphocholine, with a mixing molar ratio of 1:1. The phase-separated structure of the hybrid vesicle was demonstrated by fluorescence resonance energy transfer analysis. The lipid domain of the hybrid vesicle had a phase-transition temperature of 38 °C and allowed the permeation of a hydrophilic molecule, fluorescein isothiocyanate-labeled polyethylene glycol ( Mw: 2000), above 38 °C. The designed peptide-lipid hybrid vesicle and a "lipidic gate" are a promising tool for smart drug delivery.
Assuntos
Preparações de Ação Retardada/química , Portadores de Fármacos/química , Lipossomos/química , Peptídeos/química , Fosfatidiletanolaminas/química , Liberação Controlada de Fármacos , Fluoresceína-5-Isotiocianato/síntese química , Fluoresceína-5-Isotiocianato/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Transição de Fase , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Temperatura de TransiçãoRESUMO
Amphiphilic block polypeptides of poly(sarcosine)-b-(l-Val-Aib)6 and poly(sarcosine)-b-(l-Leu-Aib)6 and their stereoisomers were self-assembled in water. Three kinds of binary systems of poly(sarcosine)-b-(l-Leu-Aib)6 with poly(sarcosine)-b-poly(d-Leu-Aib)6, poly(sarcosine)-b-poly(l-Val-Aib)6, or poly(sarcosine)-b-(d-Val-Aib)6 generated vesicles of ca. 200 nm diameter. The viscoelasticity of the vesicle membranes was evaluated by the nanoindentation method using AFM in water. The elasticity of the poly(sarcosine)-b-(l-Leu-Aib)6/poly(sarcosine)-b-poly(d-Leu-Aib)6 vesicle was 11-fold higher than that of the egg yolk liposome but decreased in combinations of the Leu- and Val-based amphiphilic polypeptides. The membrane elasticity is found to be adjustable by a suitable combination of helical blocks in terms of stereocomplex formation and the interdigitation of side chains among helices in the molecular assemblies.
Assuntos
Oligopeptídeos/química , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Sarcosina , Viscosidade , ÁguaRESUMO
pH-Responsive molecular assemblies with a variation in morphology ranging from a twisted ribbon, a helical ribbon, to a nanotube were prepared from a novel A3B-type amphiphilic peptide having three hydrophilic poly(sarcosine) (A block) chains, a hydrophobic helical dodecapeptide (B block), and two histidine (His) residues between the A3 and B blocks. The A3B-type peptide adopted morphologies of the twisted ribbon at pH 3.0, the helical ribbon at pH 5.0, and the nanotube at pH 7.4, depending upon the protonation states of the two His residues. On the other hand, another A3B-type peptide having one His residue between the A3 and B blocks showed a morphology change only between the helical ribbon and the relatively planar sheets with pH variation in this range. The morphology change is thus induced by one- or two-charge generation at the linking site of the hydrophilic and hydrophobic blocks of the component amphiphiles but in different ways.
Assuntos
Histidina/química , Nanotubos/química , Peptídeos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Nanotubos/ultraestrutura , Estrutura Secundária de Proteína , Eletricidade EstáticaRESUMO
Unsymmetrical vesicular membranes were prepared from a binary mixture of the A3B-type and the AB-type host polypeptides, which were composed of the hydrophilic block (A) and the hydrophobic helical block (B) but with a different helix sense between the two host polypeptides. TEM and DLS revealed the formation of vesicles with ca. 100 nm diameter. The molecular assembly was driven by hydrophobic interaction, stereocomplex formation, and dipole-dipole interaction between hydrophobic helices. Furthermore, the A3B-type host polypeptide extended the hydrophilic block to the outer surface of vesicles as a result of the steric effect, resulting in the formation of unsymmetrical vesicular membranes. As a result, a functionalized AB-type guest polypeptide having the same helix sense with the A3B-type host polypeptide exposed the hydrophilic block to the outer surface. In contrast, an AB-type guest polypeptide having the same helix sense with the AB-type host polypeptide oriented the hydrophilic block to the inner surface. Functionalization of either the outer or inner surface of the binary vesicle is therefore facile to achieve when using either the right- or the left-handed helix of the functionalized guest polypeptide.
Assuntos
Peptídeos/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de ProteínaRESUMO
Nanoparticles are expected to be applicable for the theranostics as a carrier of the diagnostic and therapeutic agents. Lactosome is a polymeric micelle composed of amphiphilic polydepsipeptide, poly(sarcosine)64-block-poly(L-lactic acid)30, which was found to accumulate in solid tumors through the enhanced permeability and retention effect. However, lactosome was captured by liver on the second administration to a mouse. This phenomenon is called as the accelerated blood clearance phenomenon. On the other hand, peptide-nanosheet composed of amphiphilic polypeptide, poly(sarcosine)60-block-(L-Leu-Aib)6, where the poly(L-lactic acid) block in lactosome was replaced with the (L-Leu-Aib)6 block, abolished the accelerated blood clearance phenomenon. The ELISA and in vivo near-infrared fluorescence imaging revealed that peptide-nanosheets did not activate the immune system despite the same hydrophilic block being used. The high surface density of poly(sarcosine) chains on the peptide-nanosheet may be one of the causes of the suppressive immune response.
Assuntos
Imunossupressores/química , Nanoestruturas/química , Peptídeos/química , Sarcosina/análogos & derivados , Animais , Linhagem Celular Tumoral , Humanos , Imunoglobulina M/metabolismo , Imunossupressores/farmacocinética , Imunossupressores/farmacologia , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Peptídeos/farmacocinética , Peptídeos/farmacologia , Sarcosina/química , Sarcosina/farmacocinética , Sarcosina/farmacologiaRESUMO
This study reports the synthesis of cyclobutene derivatives in good yields via the [2 + 2] cycloaddition between lithium ynolates and α,ß-unsaturated carbonyls. The ynolates are generated from α,α,α-tribromomethyl ketones and tert-butyl lithium via a simple and novel method, which does not produce any harmful byproducts, such as lithium alkoxide, which induces a polymerization reaction with α,ß-unsaturated carbonyls.
RESUMO
A disulfide-tethered peptide-lipid conjugate self-assembled into a homogeneously distributed peptide-lipid hybrid vesicle. Upon dithiothreitol treatment, the homogeneous peptide-lipid membrane spontaneously divided into lipid-rich and peptide-rich domains, while the vesicle retained its size and shape. Membrane phase separation enhanced temperature-dependent cargo release.
Assuntos
Lipídeos , Peptídeos , Temperatura , Bicamadas LipídicasRESUMO
HYPOTHESIS: Liposomes coated with long polysarcosine (PSar) chains at a high density might enable long blood circulation and attenuate accelerated blood clearance (ABC) phenomenon. EXPERIMENTS: In this study, we controlled the length (23, 45, 68 mers) and density (5, 10, 15 mol%) of PSar on liposomal coatings and, furthermore, investigated the effects of PSar length and density on the blood circulation time, biodistribution, immune response, and ABC phenomenon induction. Length-controlled PSar-bound lipids (PSar-PEs) were synthesized using a click reaction and inserted into bare liposomes at different combinations of chain lengths and proportions. FINDINGS: Although all PSar-coated liposomes (PSar-lipos) had similar morphological, physical, and chemical properties, they had different blood circulation times and biodistribution, and exerted varied effects on the immune system. All PSar-lipos with different PSar length and density showed a similar anti-PSar IgM response. Liposomes modified with the longest PSar chain (68 mers) at a high density (15 mol%) showed the longest blood circulation time and, additionally, attenuated ABC phenomenon compared with PEG-lipo. The ex vivo analysis of the biodistribution of liposomes revealed that a thick PSar layer enhanced the blood circulation time of liposomes due to the reduction of the accumulation of liposomes in the liver and spleen. These findings provide new insights into the relationship between IgM expression and ABC phenomenon inhibition.
Assuntos
Lipossomos , Polietilenoglicóis , Lipossomos/química , Polietilenoglicóis/química , Distribuição Tecidual , Imunoglobulina M/metabolismo , ImunidadeRESUMO
Stimuli-responsive transformable biomaterials development can be manipulated practically by fine-tuning the built-in molecular design of their structural segments. Here, we demonstrate a peptide assembly by the bola-type amphiphilic polypeptide, glycolic acid-polysarcosine (PSar)13-b-(L-Leu-Aib)6-b-PSar13-glycolic acid (S13L12S13), which shows morphological transformations between hydrophilic chain-driven and hydrophobic unit-driven morphologies. The hydrophobic α-helical unit (L-Leu-Aib)6 precisely controls packing in the hydrophobic layer of the assembly and induces tubule formation. The densified, hydrophilic PSar chain on the assembly surface becomes slightly more hydrophobic as the temperature increases above 70 °C, starting to disturb the helix-helix interaction-driven formation of tubules. As a result, the S13L12S13 peptide assembly undergoes a reversible vesicle-nanotube transformation following a time course at room temperature and a heat treatment above 80 °C. Using membrane fluidity analysis with DPH and TMA-DPH and evaluating the environment surrounding the PSar side chain with NMR, we clarify that the vesicle was in a kinetically stable state driven by the dehydrated PSar chain, while the nanotube was in a thermodynamically stable state.
Assuntos
Glicolatos , Peptídeos , Peptídeos/química , Sarcosina/químicaRESUMO
Tannins, which are natural plant polyphenols, are widely used in different fields, especially in biomedical applications due to their unique properties, including high abundance, low cost, structural diversity, protein precipitation, biocompatibility, and biodegradability. However, they fail to satisfy the requirements in some specific applications (e.g., environmental remediation) on account of their water solubility, making their separation and regeneration difficult. Inspired by the design of composite materials, tannin-immobilized composites have emerged as promising and novel materials and combine or even surpass the advantages of each of their components. This strategy can endow tannin-immobilized composites with efficient manufacturing properties, high strength, good stability, easy chelating/coordinating ability, excellent antibacterial property, biological compatibility, bioactivity, chemical/corrosion resistance, and strong adhesive performance, which significantly expand their application in various fields. In this review, initially we summarize the design strategy of tannin-immobilized composites, mainly concentrating on the choice of immobilized substrate (e.g., natural polymers, synthetic polymers, and inorganic materials) as well as the binding interaction (e.g., Mannich reaction, Schiff base reaction, graft copolymerization, oxidation coupling, electrostatic interaction, and hydrogen bonding) between them. Further, the application of tannin-immobilized composites in the biomedical (tissue engineering, wound healing, cancer therapy, and biosensors) and other (leather materials, environmental remediation, and functional food packaging) fields is highlighted. Finally, we conclude with some thoughts on the open challenges and future perspectives of tannin composites. It can be anticipated that tannin-immobilized composites will continuously draw attention from more and more researchers, and further promising applications of tannin composites will be explored.
Assuntos
Polifenóis , Taninos , Taninos/química , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/química , Engenharia TecidualRESUMO
Fibroblasts geometrically confined by photo-immobilized gelatin micropatterns were subjected to cyclic stretch on the silicone elastomer. By using covalently micropatterned surfaces, the cell morphologies such as cell area and length were quantitatively investigated under a cyclic stretch for 20 hours. The mechanical forces did not affect the cell growth but significantly altered the cellular morphology on both non-patterned and micropatterned surfaces. It was found that cells on non-patterns showed increasing cell length and decreasing cell area under the stretch. The width of the strip micropatterns provided a different extent of contact guidance for fibroblasts. The highly extended cells on the 10 µm pattern under static conditions would perform a contraction behavior once treated by cyclic stretch. In contrast, cells with a low extension on the 2 µm pattern kept elongating according to the micropattern under the cyclic stretch. The vertical stretch induced an increase in cell area and length more than the parallel stretch in both the 10 µm and 2 µm patterns. These results provided new insights into cell behaviors under geometrical confinement in a dynamic biomechanical environment and may guide biomaterial design for tissue engineering in the future.
RESUMO
A pH-responsive rolled-sheet morphology was prepared from a triskelion A(2)B-type amphiphilic polypeptide having a histidine residue as a pH-responsive unit. The dimensions of the rolled sheet were 85 nm diameter and 210 nm length with a sheet turn number of 2.0 at pH 7.4. Upon decreasing the pH from 7.4 to 5.0, the layer spacing of the rolled sheets was widened from ca. 9 to ca. 19 nm due to electrostatic repulsion caused by histidine protonation. This morphology change occurred reversibly with a pH change between 7.4 and 5.0. The molecular packing in the rolled sheets was shown to be loosened at pH 5.0 on the basis of electron diffraction measurements. The tightness of the rolled sheets was thus controlled reversibly by a pH change due to a single protonation in the amphiphilic polypeptide.
Assuntos
Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Histidina/química , Concentração de Íons de Hidrogênio , Nitrogênio/química , Estrutura Secundária de ProteínaRESUMO
Precise control of molecular arrangement is essential for functional molecular assemblies. A linear (I-shaped) amphiphilic block copolypeptide, polysarcosine-b-(l-Leu-Aib)6 (I-SL12), which has a hydrophilic polysarcosine (PSar) chain and a hydrophobic helical block, was reported to self-assemble into nanotubes by regular packing of the Leu side chains. Here, we have synthesized a T-shaped amphiphilic block copolypeptide, (l-Leu-Aib)3-AzF(PSar)-Aib-(l-Leu-Aib)2 (T-SL12), to investigate the effect of molecular geometry on the morphology of molecular assemblies. Unlike conventional I-SL12, T-SL12 self-assembles into helical nanotubes. A mixture of T-SL12 (a right-handed helix) and polysarcosine-b-(d-Leu-Aib)6 (I-SdL12, a left-handed helix) formed flat rod-shaped structures, while the mixture of T-SL12 and I-SL12 (both right-handed) forms nanotubes with an 80-nm diameter. This result indicates that stereo-complexes was formed between T-SL12 and I-SdL12. Peptidic flat-rod were obtained at ratios of T-SL12 and I-SdL12 from 1:1 to 1:3 (wt/wt), although their width (ca. 12 nm) and length (50-200 nm) did not change with stoichiometry. The thickness (6 nm) of the flat rod was measured by AFM. From these dimensions, we propose that the minor axis of peptidic flat-rod is composed of two stereo-complexed heterodimers of T-SL12 and I-SdL12 by orienting the I-SdL12s facing each other, and that this four-peptide unit is repeated side-by-side along the long axis.
Assuntos
Oligopeptídeos , Peptídeos , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Oligopeptídeos/química , Peptídeos/química , Conformação Proteica , EstereoisomerismoRESUMO
Peptide-lipid hybrid vesicles were prepared with complementary DNA strands in their lipid domains. Hybridization of the complementary DNA strands induced the controlled fusion of the vesicles during repeated heating and cooling cycles. Vesicle fusion was indicated by a decrease in the efficiency of Förster resonance energy transfer between lipid-localized probes (from 72 to 42%) and transmission electron microscopy analysis. We suggest that this approach is a general strategy for the creation of polymersomes with membrane-fusion functionality.