Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 167: 178-190, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29170071

RESUMO

Ambiguous and masked stimuli have been used to study conscious perception by comparing neural activity during different percepts of identical physical stimuli. One limitation of this approach is that it typically requires a reporting task that may engage neural processes beyond those required for conscious perception. Here, we explored potential fMRI correlates of auditory conscious perception with and without overt report. In experiment 1, regular tone patterns were presented as targets under informational masking, and participants reported their percepts on each trial. In experiment 2, regular tone patterns were presented without masking, while the uninformed participants (i) passively fixated, (ii) performed an orthogonal visual task, and (iii) reported trial-wise the presence of the auditory pattern as in experiment 1 (in fixed order). Under informational masking, target-pattern detection was associated with activity in auditory cortex, superior temporal sulcus, and a distributed fronto-parieto-insular network. Unmasked and task-irrelevant tone patterns elicited activity that overlapped with the network observed under informational masking in auditory cortex, the right superior temporal sulcus, and the ventral precentral sulcus in an ROI analysis. We therefore consider these structures candidate regions for a neural substrate of auditory conscious perception. In contrast, activity in the intraparietal sulcus, insula, and dorsal precentral sulcus were only observed for unmasked tone patterns when they were task relevant. These areas therefore appear more closely related to task performance or top-down attention rather than auditory conscious perception, per se.


Assuntos
Atenção/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiologia , Adulto , Córtex Auditivo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
2.
Adv Exp Med Biol ; 787: 435-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23716250

RESUMO

The audibility of a target tone is improved by introducing either -amplitude modulations that are coherent across different frequency channels of the masker (comodulation masking release, CMR) or interaural phase differences that are -different for target and masker (binaural masking-level difference, BMLD). Although the two effects are likely to be based on different processing strategies, they both result in improved figure-background decomposition for a target-in-noise situation. In this study, we analyzed the combination of CMR and BMLD for a -target tone in a masker with six 48-Hz-wide noise bands, distributed over a wide frequency range from 216 Hz to 2.78 kHz. Psychoacoustical detection thresholds for the tones in noise were determined for two masker conditions (comodulated or unmodulated bands) and two interaural phase differences of the target tone (0 or 180°). The mean results indicate that the effects of unmasking add independently. The lowest thresholds are found for the dichotic signal embedded in a -modulated masker with an overall threshold difference of about 16 dB compared to the -unmodulated condition with no binaural cues. Based on the psychoacoustic results, a set of 12 signal-masker configurations was selected individually to explore the representation of the audibility of the test tone in brain activation maps by means of auditory functional MR imaging. The comparison of the results for the combination of CMR and BMLD with the results for the separate effects indicates a large overlap of the activated brain regions, where a largely extended area is activated, covering primary auditory cortex and adjacent regions. The result is in agreement with previous fMRI studies on auditory masking, identifying specific regions in the auditory cortex representing a change of the audibility of a target tone in a noise masker, irrespective of the overall sound pressure level of the stimulus.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mascaramento Perceptivo/fisiologia , Localização de Som/fisiologia , Estimulação Acústica/métodos , Adulto , Limiar Auditivo/fisiologia , Mapeamento Encefálico/métodos , Sinais (Psicologia) , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Ruído , Detecção de Sinal Psicológico/fisiologia , Percepção do Tempo/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA