Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(8): 4443-4509, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37067292

RESUMO

Energy from renewable resources is central to environmental sustainability. Among the renewables, sunlight-driven fuel synthesis is a sustainable and economical approach to produce vectors such as hydrogen through water splitting. The photocatalytic water splitting is limited by the water oxidation half-reaction, which is kinetically and energetically demanding and entails designer photocatalysts. Such challenges can be addressed by employing alternative oxidation half-reactions. Photoreforming can drive the breakdown of waste plastics and biomass into valuable organic products for the production of H2. We provide an overview of photoreforming and its underlying mechanisms that convert waste polymers into H2 fuels and fine chemicals. This is of paramount importance from two complementary perspectives: (i) green energy harvesting and (ii) environmental sustainability by decomposing waste polymers into valuables. Competitive results for the generation of H2 fuel without environmental hazards through photoreforming are being generated. The photoreforming process, mechanisms, and critical assessment of the field are scarce. We address such points by focusing on (i) the concept of photoreforming and up-to-date knowledge with key milestones achieved, (ii) uncovering the concepts and challenges in photoreforming, and (iii) the design of photocatalysts with underlying mechanisms and pathways through the use of different polymer wastes as substrates.

2.
Environ Monit Assess ; 196(7): 605, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856803

RESUMO

Petroleum hydrocarbons (PHCs) are produced from industrial discharges, storage leakages, accidental spills, and operational failures. The hazardous nature of PHCs causes serious health risks and threatens the entire aquatic habitat. In this research work, the investigation of the removal of total petroleum hydrocarbons (TPHs) from the contaminated water is carried out utilizing a novel hypercross-linked resin, MAICY, which is generated by condensation of commercially available precursors. The chemical structures of MAICY have been examined extensively by FESEM, FT-IR, solid (CP-MAS) 13C-NMR, and TGA. A comprehensive analysis for adsorption parameters of TPHs has been performed, and different models such as Langmuir and Freundlich isotherms have been employed where the Freundlich isotherm was found to be the best fit for removal of THPs (R2= 0.9991). The results revealed that the performance of MAICY for the adsorption of TPHs from contaminated water gives a maximum adsorption capacity (qe) of 146 mg.g-1. The results of various parameters hinted that the contact time (0.25-4 h), the dosage of adsorbent (0.17 g/L), pH (7), and concentration of TPHs (26.5 mg/L) have controlled the overall adsorptive performance. Moreover, the kinetic data of qe(expt.) and qe(calc.) for adsorption of TPHs disclosed the regression values (R2) for pseudo-first order (R2= 0.9921) and pseudo-second order (R2= 0.9891). Additionally, based on CHI factor (X2) error estimations, the data was shown to be more consistent with pseudo-first-order kinetics. Moreover, MAICY demonstrated excellent reusability and recycling properties for up to four consecutive adsorption-desorption cycles.


Assuntos
Hidrocarbonetos , Petróleo , Triazinas , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Adsorção , Petróleo/análise , Triazinas/química , Triazinas/análise , Cinética
3.
Arch Pharm (Weinheim) ; 356(1): e2200400, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36284484

RESUMO

Herein, a library of novel pyridone derivatives 1-34 was designed, synthesized, and evaluated for α-amylase and α-glucosidase inhibitory as well as antioxidant activities. Pyridone derivatives 1-34 were synthesized via a one-pot multi-component reaction of variously substituted aromatic aldehydes, acetophenone, ethyl cyanoacetate, and ammonium acetate in absolute ethanol. Synthetic compounds 1-34 were structurally characterized by different spectroscopic techniques. Most of the tested compounds showed more promising inhibition potential than the standard acarbose (IC50 = 14.87 ± 0.16 µM) but compounds 13 and 12 were found to be the most potent compounds with IC50 values of 9.20 ± 0.14 µM and 3.05 ± 0.18 µM against α-amylase and α-glucosidase enzymes, respectively. Compounds 1-34 also displayed moderate antioxidant potential in the range of IC50 = 96.50 ± 0.45 to 189.98 ± 1.00 µM in comparison to the control butylated hydroxytoluene (BHT) (IC50 = 66.50 ± 0.36 µM), in DPPH radical scavenging activities. Additionally, all synthetic derivatives were subjected to a molecular docking study to investigate the interaction details of compounds 1-34 (ligands) with the active site of enzymes (receptors). These results indicate that the newly synthesized pyridone class may serve as promising lead candidates for controlling diabetes mellitus and as antioxidants.


Assuntos
Antioxidantes , alfa-Glucosidases , Antioxidantes/farmacologia , Antioxidantes/química , alfa-Glucosidases/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , alfa-Amilases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química
4.
Chem Rec ; 22(8): e202200062, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35641392

RESUMO

Covalent organic frameworks (COFs) are a promising class of porous crystalline materials made up of covalently connected and periodically protracted network topologies through organic linkers. The tailorability of organic linker and intrinsic structures endow COFs with a tunable porosity and structure, low density, facilely-tailored functionality, and large surface area, attracting increasing amount of interests in variety of research areas of membrane separations. COF-based membranes have spawned a slew of new research projects, ranging from fabrication methodologies to separation applications. Herein, we tried to emphasis the major developments in the synthetic approaches of COFs based membranes for a variety of separation applications such as, separation of gaseous mixtures, water treatment as well as separation of isomeric and chiral organic compounds. The proposed methods for fabricating COF-based continuous membranes and columns for real world applications are also thoroughly explored. Finally, a viewpoint on the future directions and remaining challenges for COF research in the area of separation is provided.


Assuntos
Estruturas Metalorgânicas , Purificação da Água , Gases , Estruturas Metalorgânicas/química , Compostos Orgânicos , Porosidade
5.
Chem Rec ; 22(7): e202100336, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35257485

RESUMO

The future challenges associated with the shortage of fossil fuels and their current environmental impacts intrigued the researchers to look for alternative ways of generating green energy. Solar-driven water splitting into oxygen and hydrogen is one of those advanced strategies. Researchers have studied various semiconductor materials to achieve potential results. However, it encountered multiple challenges such as high cost, low photostability and efficiency, and required multistep modifications. The conjugated polymers (CPs) have emerged as promising alternatives for conventional inorganic semiconductors. The CPs offer low cost, sufficient light absorption efficiency, excellent photo and chemical stability, and molecular optoelectronic tunable characteristics. Furthermore, organic CPs also present higher flexibility to tune the basic framework of the backbone of the polymers, amendments in the sidechain to incorporate desired functionalities, and much-needed porosity to serve better for photocatalytic applications. This review article summarizes the recent advancements made in visible-light-driven water splitting covering the aspects of synthetic strategies and experimental parameters employed for water splitting reactions with special emphasis on conjugated polymers such as linear CPs, planarized CPs, graphitic carbon nitride (g-C3 N4 ), conjugated microporous polymers (CMPs), covalent organic frameworks (COFs), and conjugated polymer-based nanocomposites (CPNCs). The current challenges and future prospects have also been described briefly.

6.
Mikrochim Acta ; 189(11): 426, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36260130

RESUMO

Monitoring of pollutant and toxic substances is essential for cleaner environment and healthy life. Sensing of various environmental contaminants and biomolecules such as heavy metals, pharmaceutics, toxic gases, volatile organic compounds, food toxins, and pathogens is of high importance to guaranty the good health and sustainable environment to community. In recent years, graphitic carbon nitride (g-CN) has drawn a significant amount of interest as a sensor due to its large surface area and unique electrochemical properties, low bandgap energy, high thermal and chemical stability, facile synthesis, nontoxicity, and electron rich property. Furthermore, the binary and ternary nanocomposites of graphitic carbon nitride further enhance their performance as a sensor making it a cost effective, fast, and reliable gadget for the purpose, and opens a wide area of research. Numerous reviews addressing a variety of applications including photocatalytic energy conversion, photoelectrochemical detection, and hydrogen evolution of graphitic carbon nitride have been documented to date. But a lesser attention has been devoted to the mechanistic approaches towards sensing of variety of pollutants concerned with environmental and biological aspects. Herein, we present the sensing features of graphitic carbon nitride towards the detection of various analytes including toxic heavy metals, pharmaceuticals, phenolic compounds, nitroaromatic compounds, volatile organic molecules, toxic gases, and foodborne pathogens. This review will undoubtedly provide future insights for researchers working in the field of sensors, allowing them to investigate the intriguing graphitic carbon nitride material as a sensing platform that is comparable to several other nanomaterials documented in the literature. Therefore, we hope that this study could reveal some intriguing sensing properties of graphitic carbon nitride, which may help researchers better understand how it interacts with contaminants of environmental and biological concern. Graphitic carbon nitride Nanosheets as Promising Analytical Tool for Environmental and Biological Monitoring of Hazardous Substances.


Assuntos
Poluentes Ambientais , Nanocompostos , Compostos Orgânicos Voláteis , Nanocompostos/química , Gases , Substâncias Perigosas , Hidrogênio , Preparações Farmacêuticas
7.
Chem Soc Rev ; 50(17): 9766-9793, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34286704

RESUMO

The past two decades have witnessed remarkable growth of asymmetric organocatalysis, which is now a firmly established synthetic tool, serving as a powerful platform for the production of chiral molecules. Ring structures are ubiquitous in organic compounds, and, in the context of natural product synthesis, strategic construction of ring motifs is often crucial, fundamentally impacting the eventual fate of the whole synthetic plan. In this review, we provide a comprehensive and updated summary of asymmetric organocatalytic annulation reactions; in particular, the application of these annulation strategies in natural product synthesis will be highlighted.


Assuntos
Produtos Biológicos , Catálise , Compostos Orgânicos , Estereoisomerismo
8.
Angew Chem Int Ed Engl ; 61(47): e202209494, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36200408

RESUMO

A sequential phosphine-catalyzed asymmetric [3+2] annulation of aldimines with allenoates and oxidative central-to-axial chirality transfer strategy has been developed. This approach is operationally simple, allowing for rapid access to a range of axially chiral CF3 -containing 2-arylpyrroles with high enantiomeric excess. Furthermore, an atroposelective synthesis of esaxerenone is presented, illustrating the practical potential of the reported method.


Assuntos
Fosfinas , Catálise , Estereoisomerismo , Estresse Oxidativo
9.
Chemistry ; 27(23): 6973-6984, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33609404

RESUMO

Tungsten oxide/graphene hybrid materials are attractive semiconductors for energy-related applications. Herein, we report an asymmetric supercapacitor (ASC, HRG//m-WO3 ASC), fabricated from monoclinic tungsten oxide (m-WO3 ) nanoplates as a negative electrode and highly reduced graphene oxide (HRG) as a positive electrode material. The supercapacitor performance of the prepared electrodes was evaluated in an aqueous electrolyte (1 m H2 SO4 ) using three- and two-electrode systems. The HRG//m-WO3 ASC exhibits a maximum specific capacitance of 389 F g-1 at a current density of 0.5 A g-1 , with an associated high energy density of 93 Wh kg-1 at a power density of 500 W kg-1 in a wide 1.6 V operating potential window. In addition, the HRG//m-WO3 ASC displays long-term cycling stability, maintaining 92 % of the original specific capacitance after 5000 galvanostatic charge-discharge cycles. The m-WO3 nanoplates were prepared hydrothermally while HRG was synthesized by a modified Hummers method.

10.
J Environ Manage ; 287: 112360, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33752053

RESUMO

Water quality plays a central role in the well-being of all the living organisms on planet Earth. The ever-increasing human population and consequently increasing industrialization, urbanization, and chemically boosted cultivation are rapidly contaminating already stressed water resources. The availability of clean drinking water has become scarce for masses across the globe, and this situation is becoming alarming in developing countries. Therefore, the immediate need for cost-effective, easily accessible, eco-friendly, portable, thermally efficient, and chemically stable technologies and materials is desperately felt to meet the high global demand for clean water. To search for effective materials for wastewater treatment, the hyper-cross-linked porous polymers (HCPs) have emerged as an excellent class of porous materials for wastewater treatment due to their unique features of high surface area, tunability, biodegradability, and chemical versatility. This review describes the advances in fabrication strategies and the efficient utilization of hyper-cross-linked porous polymers for wastewater treatment. Moreover, this review specifically discusses the hyper-cross-linked porous polymers effectiveness for the separation of the dyes, nutrients, inorganic ions, organic contaminants, and toxic metals ions. Finally, the review provides insight into the challenges and prospects in the area of hyper-cross-linked porous polymers. Overall, the hyper-cross-linked porous polymers with empowering proper functionalization can provide an opportunity for the wastewater treatment not only to remove toxic contaminants but also to make contaminated water useful for various applications.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Adsorção , Corantes , Humanos , Íons , Polímeros , Porosidade , Águas Residuárias
11.
Chem Res Toxicol ; 33(6): 1292-1311, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31884781

RESUMO

The optoelectrical and magnetic characteristics of naturally existing iron-based nanostructures, especially hematite and magnetite nanoparticles (H-NPs and M-NPs), gained significant research interest in various applications, recently. The main purpose of this Review is to provide an overview of the utilization of H-NPs and M-NPs in various environmental remediation. Iron-based NPs are extensively explored to generate green energy from environmental friendly processes such as water splitting and CO2 conversion to hydrogen and low molecular weight hydrocarbons, respectively. The latter part of the Review provided a critical overview to use H-NPs and M-NPs for the detection and decontamination of inorganic and organic contaminants to counter the environmental pollution and toxicity challenge, which could ensure environmental sustainability and hygiene. Some of the future perspectives are comprehensively presented in the final portion of the script, optimiztically, and it is supported by some relevant literature surveys to predict the possible routes of H-NPs and M-NPs modifications that could enable researchers to use these NPs in more advanced environmental applications. The literature collection and discussion on the critical assessment of reserving the environmental sustainability challenges provided in this Review will be useful not only for experienced researchers but also for novices in the field.


Assuntos
Recuperação e Remediação Ambiental , Compostos Férricos , Óxido Ferroso-Férrico , Nanoestruturas , Poluição Ambiental/prevenção & controle , Compostos Férricos/química , Óxido Ferroso-Férrico/química , Nanoestruturas/química , Energia Renovável
12.
Bioorg Chem ; 101: 103979, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32544738

RESUMO

(E)-3-(2-Benzylidenehydrazinyl)-5,6-diphenyl-1,2,4-triazines analogs 1-27 were synthesized by multi-step reaction scheme and subjected to in vitro inhibitory screening against α-amylase and α-glucosidase enzymes. Out of these twenty-seven synthetic analogs, ten compounds 14-17, 19, and 21-25 are structurally new. All compounds exhibited good to moderate inhibitory potential in terms of IC50 values ranging (IC50 = 13.02 ± 0.04-46.90 ± 0.05 µM) and (IC50 = 13.09 ± 0.08-46.44 ± 0.24 µM) in comparison to standard acarbose (IC50 = 12.94 ± 0.27 µM and 10.95 ± 0.08 µM), for α-amylase and α-glucosidase, respectively. Structure-activity relationship indicated that analogs with halogen substitution(s) were found more active as compared to compounds bearing other substituents. Kinetic studies on most active α-amylase and α-glucosidase inhibitors 5, 7, 9, 15, 24, and 27, suggested non-competitive and competitive types of inhibition mechanism for α-amylase and α-glucosidase, respectively. Molecular docking studies predicted the good protein-ligand interaction (PLI) profile with key interactions such as arene-arene, H-<, <-<, and <-H etc., against the corresponding targets.


Assuntos
Acarbose/uso terapêutico , Diabetes Mellitus Tipo 2/dietoterapia , Simulação de Acoplamento Molecular/métodos , Triazinas/química , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
13.
Environ Res ; 184: 109337, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151846

RESUMO

A novel hyper-cross-linked polyamide resin (PSI-PA) has been synthesized for the ultrahigh removal of Congo red (CR) and Eriochrom Black T (EBT) from aqueous solution. The mesoporous resin, having a specific surface area (98.80 m2 g-1), showed maximum adsorption capacity (Qmax) of 522.18 mg g-1 for CR (pH 9.0) and 460.34 mg g-1 for EBT (pH 6) at room temperature. The adsorption of these dyes was rapid and the equilibrium was attained within 4 h. The kinetic data was well-fitted by pseudo-second-order rate equation. Analysis of the surface chemical composition of loaded PSI-PA by XPS revealed the appearance of a new peak at around 166.0 eV (S 2p), confirming the adsorption of the sulfur-based dyes onto the resin. Examination of experimental data of dyes adsorption by a variety of non-linear adsorption isotherms and kinetic models suggested that the Langmuir model exhibited the best fit with high correlation coefficients for both CR (R2 = 0.9966) and EBT (R2 = 0.9934). PSI-PA has been extensively characterized by FT-IR, solid state 13C (CP-MAS) NMR, EDS, TGA and BET analysis. Moreover, PSI-PA exhibited 82% removal efficiency for dyes in simulated effluents, manifesting its promise and utility for treating industrial effluent.


Assuntos
Compostos Azo , Poluentes Químicos da Água , Adsorção , Ácido Aspártico/análogos & derivados , Corantes , Vermelho Congo , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
14.
Luminescence ; 35(8): 1238-1247, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32501608

RESUMO

Zinc plays a key role in many physiological processes and has implications for the environment. Consequently, detection of chelatable zinc ion (Zn2+ ) has attracted widespread interest from the research community. Lanthanide-based luminescent probes offer particular advantages, such as high water solubility, long luminescence lifetimes and a large Stokes' shift, over common organic dye-based fluorescent sensors. Here, we report the synthesis of terbium and europium complex-based probes, Tb-1 and Eu-1, for sensitive and selective detection of Zn2+ in water. These probes featured the incorporation of bis(2-pyridylmethyl)]amine (DPA) receptor for Zn2+ chelation and the 1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane (DO3A) ring to chelate lanthanide (Ln3+ ). Tb-1 and Eu-1 displayed high selectivity for Zn2+ ions over a wide range of competing ions, with limits of detection of 0.50 ± 0.1 µM and 1.5 ± 0.01 µM, respectively. Density functional theory simulations were in good agreement with experimental observations, displaying high Zn2+ selectivity compared with most competing ions. In the competing ions experiments, the luminescence response of Tb-1 and Eu-1 was moderately quenched by some ions such as Cu2+ , this was linked to the comparable binding abilities of these ions for the receptor of the probe.


Assuntos
Európio , Térbio , Íons , Luminescência , Medições Luminescentes , Zinco
15.
Saudi Pharm J ; 28(7): 869-875, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32647489

RESUMO

Herein, we report novel macromolecular prodrugs (MPDs) of flurbiprofen (FLB) onto a cellulose ether, hydroxypropylcellulose (HPC). The FLB was activated with a powerful acylation reagent carbonyldiimadazole (CDI) in N,N' dimethylacetamide (DMAc) solvent at room temperature. Imidazolide of FLB generated in situ reacts at 80 °C for 24 h with pre-dissolved HPC to prepare HPC-FLB conjugates. The resultant MPDs of FLB showed moderate to high degree of substitution (DS: 0.35-1.3) with good yield (70-82%). Structures were thoroughly characterized using FTIR, UV and NMR spectroscopic analyses. The pharmacokinetic studies showed that the t1/2 and tmax values of FLB from HPC-FLB conjugate were increased substantially as compare to standard FLB indicates enhanced bioavailability of drug after conjugate formation. Remarked anti-inflammatory activity of the HPC-FLB conjugate was also observed.

16.
Angew Chem Int Ed Engl ; 56(45): 14222-14226, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28816392

RESUMO

The first highly enantioselective phosphine-catalyzed formal [4+4] annulation has been developed. In the presence of amino-acid-derived phosphines, the unprecedented [4+4] annulations between benzofuran/indole-derived α,ß-unsaturated imines and allene ketones proceeded smoothly, thus affording azocines, bearing either a benzofuran or an indole moiety, in excellent yields and with nearly perfect enantioselectivities (≥98 % ee in most cases). This work marks the first efficient asymmetric construction of optically enriched eight-membered rings by phosphine catalysis.

17.
Bioorg Chem ; 64: 13-20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26595185

RESUMO

A series of new biphenyl bis-sulfonamide derivatives 2a-3p were synthesized in good to excellent yield (76-98%). The inhibitory potential of the synthesized compounds on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was investigated. Most of the screened compounds showed modest in vitro inhibition for both AChE and BChE. Compared to the reference compound eserine (IC50 0.04 ± 0.0001 µM for AChE) and (IC50 0.85 ± 0.0001 µM for BChE), the IC50 values of these compounds were ranged from 2.27 ± 0.01 to 123.11 ± 0.04 µM for AChE and 7.74 ± 0.07 to <400 µM for BuChE. Among the tested compounds, 3p was found to be the most potent against AChE (IC50 2.27 ± 0.01 µM), whereas 3g exhibited the highest inhibition for BChE (IC50 7.74 ± 0.07 µM). Structure-activity relationship (SAR) of these compounds was developed and elaborated with the help of molecular docking studies.


Assuntos
Acetilcolinesterase/metabolismo , Compostos de Bifenilo/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Sulfonamidas/farmacologia , Animais , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Humanos , Simulação de Acoplamento Molecular , Fisostigmina/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Torpedo
18.
Arch Pharm (Weinheim) ; 349(9): 724-32, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27489132

RESUMO

An efficient atom-economic one-pot synthesis of highly functionalized piperidines was achieved by catalytic multicomponent reaction. A wide range of heterogeneous and homogenous catalysts were explored; however, promising results were achieved when a ß-keto-ester was reacted with selected aromatic aldehydes and anilines by using N-acetyl glycine (NAG) as catalyst. The implication of this methodology is straightforward since the products were precipitated out from the reaction solution, eliminating the need of column chromatography purifications. The synthesized piperidines were screened against α-glucosidase inhibition, which revealed that these compounds were very active inhibitors, and some of the compounds showed even better inhibition than the reference compound, at low micromolar concentrations. In silico molecular modeling was also performed to investigate the binding modes of the compounds into the active sites of the target protein.


Assuntos
Técnicas de Química Sintética/métodos , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Piperidinas/síntese química , Piperidinas/farmacologia , alfa-Glucosidases/metabolismo , Biocatálise/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/química , Modelos Moleculares , Relação Estrutura-Atividade
19.
Bioorg Chem ; 58: 65-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25462626

RESUMO

A new and efficient solvent free synthesis of 2,4,5-trisubstituted imidazoles (3a-3j) was achieved by N-acetyl glycine (NAG) catalyzed three components condensation of aldehydes, benzil and ammonium acetate. Our synthetic methodology accommodated a range of various substituted alkyl and aryl aldehydes. Evaluation of α-glucosidase inhibitory activity of these imidazole derivatives revealed that most of them presented good α-glucosidase inhibition at low micro-molar concentrations. Among the synthesized compounds, compound 3c, bearing the ortho-hydroxy phenyl substituent at position 2 displayed the highest inhibitory activity with an IC50 value 74.32±0.59 µM. In silico molecular docking for all compounds and computational studies of the most active compound 3c were also performed.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Imidazóis/farmacologia , Catálise , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Humanos , Imidazóis/química , Imidazóis/uso terapêutico , Modelos Moleculares , Espectroscopia de Prótons por Ressonância Magnética , Solventes/química , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
20.
Molecules ; 20(5): 7807-19, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25939069

RESUMO

Two new DTPA-bis(amide) based ligands conjugated with the arylpiperazinyl moiety were synthesized and subsequently transformed into their corresponding Gd(III) complexes 1 and 2 of the type [Gd(L)H2O]·nH2O. The relaxivity (R1) of these complexes was measured, which turned out to be comparable with that of Omniscan®, a commercially available MRI contrast agent. The cytotoxicity studies of these complexes indicated that they are non-toxic, which reveals their potential and physiological suitability as MRI contrast agents. All the synthesized ligands and complexes were characterized with the aid of analytical and spectroscopic methods, including elemental analysis, 1H-NMR, FT-IR, XPS and fast atom bombardment (FAB) mass spectrometry.


Assuntos
Gadolínio DTPA/administração & dosagem , Gadolínio DTPA/química , Gadolínio/administração & dosagem , Gadolínio/química , Ácido Pentético/administração & dosagem , Ácido Pentético/química , Células 3T3 , Amidas , Animais , Linhagem Celular , Meios de Contraste/administração & dosagem , Ligantes , Imageamento por Ressonância Magnética , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA