Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Mol Cell ; 70(4): 730-744.e6, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29706538

RESUMO

Processes like cellular senescence are characterized by complex events giving rise to heterogeneous cell populations. However, the early molecular events driving this cascade remain elusive. We hypothesized that senescence entry is triggered by an early disruption of the cells' three-dimensional (3D) genome organization. To test this, we combined Hi-C, single-cell and population transcriptomics, imaging, and in silico modeling of three distinct cells types entering senescence. Genes involved in DNA conformation maintenance are suppressed upon senescence entry across all cell types. We show that nuclear depletion of the abundant HMGB2 protein occurs early on the path to senescence and coincides with the dramatic spatial clustering of CTCF. Knocking down HMGB2 suffices for senescence-induced CTCF clustering and for loop reshuffling, while ectopically expressing HMGB2 rescues these effects. Our data suggest that HMGB2-mediated genomic reorganization constitutes a primer for the ensuing senescent program.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Genoma Humano , Proteína HMGB2/metabolismo , Fator de Ligação a CCCTC/genética , Proliferação de Células , Senescência Celular , Cromatina/genética , Proteína HMGB2/genética , Células Endoteliais da Veia Umbilical Humana , Humanos
3.
Cell ; 143(2): 201-11, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20946980

RESUMO

Signaling by ErbB receptors requires the activation of their cytoplasmic kinase domains, which is initiated by ligand binding to the receptor ectodomains. Cytoplasmic factors contributing to the activation are unknown. Here we identify members of the cytohesin protein family as such factors. Cytohesin inhibition decreased ErbB receptor autophosphorylation and signaling, whereas cytohesin overexpression stimulated receptor activation. Monitoring epidermal growth factor receptor (EGFR) conformation by anisotropy microscopy together with cell-free reconstitution of cytohesin-dependent receptor autophosphorylation indicate that cytohesins facilitate conformational rearrangements in the intracellular domains of dimerized receptors. Consistent with cytohesins playing a prominent role in ErbB receptor signaling, we found that cytohesin overexpression correlated with EGF signaling pathway activation in human lung adenocarcinomas. Chemical inhibition of cytohesins resulted in reduced proliferation of EGFR-dependent lung cancer cells in vitro and in vivo. Our results establish cytohesins as cytoplasmic conformational activators of ErbB receptors that are of pathophysiological relevance.


Assuntos
Adenocarcinoma/patologia , Receptores ErbB/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias Pulmonares/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Adenocarcinoma/metabolismo , Animais , Dimerização , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Transplante de Neoplasias , Estrutura Terciária de Proteína , Transdução de Sinais , Transplante Heterólogo , Triazóis/farmacologia
4.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530478

RESUMO

Centrosome amplification is a hallmark of human cancers that can trigger cancer cell invasion. To survive, cancer cells cluster amplified extra centrosomes and achieve pseudobipolar division. Here, we set out to prevent clustering of extra centrosomes. Tubulin, by interacting with the centrosomal protein CPAP, negatively regulates CPAP-dependent peri-centriolar material recruitment, and concurrently microtubule nucleation. Screening for compounds that perturb CPAP-tubulin interaction led to the identification of CCB02, which selectively binds at the CPAP binding site of tubulin. Genetic and chemical perturbation of CPAP-tubulin interaction activates extra centrosomes to nucleate enhanced numbers of microtubules prior to mitosis. This causes cells to undergo centrosome de-clustering, prolonged multipolar mitosis, and cell death. 3D-organotypic invasion assays reveal that CCB02 has broad anti-invasive activity in various cancer models, including tyrosine kinase inhibitor (TKI)-resistant EGFR-mutant non-small-cell lung cancers. Thus, we have identified a vulnerability of cancer cells to activation of extra centrosomes, which may serve as a global approach to target various tumors, including drug-resistant cancers exhibiting high incidence of centrosome amplification.


Assuntos
Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Tubulina (Proteína)/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Centrossomo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Camundongos , Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Proc Natl Acad Sci U S A ; 109(42): 17034-9, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23035247

RESUMO

Small cell lung cancer (SCLC) accounts for about 15% of all lung cancers. The prognosis of SCLC patients is devastating and no biologically targeted therapeutics are active in this tumor type. To develop a framework for development of specific SCLC-targeted drugs we conducted a combined genomic and pharmacological vulnerability screen in SCLC cell lines. We show that SCLC cell lines capture the genomic landscape of primary SCLC tumors and provide genetic predictors for activity of clinically relevant inhibitors by screening 267 compounds across 44 of these cell lines. We show Aurora kinase inhibitors are effective in SCLC cell lines bearing MYC amplification, which occur in 3-7% of SCLC patients. In MYC-amplified SCLC cells Aurora kinase inhibition associates with G2/M-arrest, inactivation of PI3-kinase (PI3K) signaling, and induction of apoptosis. Aurora dependency in SCLC primarily involved Aurora B, required its kinase activity, and was independent of depletion of cytoplasmic levels of MYC. Our study suggests that a fraction of SCLC patients may benefit from therapeutic inhibition of Aurora B. Thus, thorough chemical and genomic exploration of SCLC cell lines may provide starting points for further development of rational targeted therapeutic intervention in this deadly tumor type.


Assuntos
Inibidores Enzimáticos/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Apoptose/efeitos dos fármacos , Aurora Quinase B , Aurora Quinases , Benzotiazóis , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Primers do DNA/genética , Diaminas , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Immunoblotting , Compostos Orgânicos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-myc/metabolismo , Quinolinas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Int J Cancer ; 134(12): 2829-40, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24242212

RESUMO

NKG2D, an activating receptor expressed on NK cells and T cells, is critically involved in tumor immunosurveillance. In this study, we explored the potential therapeutic utility of the NKG2D ligand ULBP2 for the treatment of colon carcinoma. To this end we designed a fusion protein consisting of human ULBP2 and an antibody-derived single chain targeting the tumor carcinoembryonic antigen (CEA). The bispecific recombinant fusion protein re-directed NK cells towards malignant cells by binding to both, tumor cells and NK cells, and triggered NK cell-mediated target cell killing in vitro. Moreover, tumor growth was significantly delayed in a syngeneic colon carcinoma mouse model in response to immunoligand treatment. The anti-tumor activity could be attributed to the stimulation of immune cells with an elevated expression of the activation marker CD69 on NK, T and NKT cells and the infiltration of CD45+ immune cells into the solid tumor. In summary, it was demonstrated that immunoligands provide specific tumor targeting by NK cells and exert anti-tumor activity in vitro and in vivo. This technology represents a novel immunotherapeutic strategy for solid tumors with the potential to be further developed for clinical applications.


Assuntos
Antígeno Carcinoembrionário/imunologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Células T Matadoras Naturais/imunologia , Transferência Adotiva , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígeno Carcinoembrionário/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas Ligadas por GPI/uso terapêutico , Células HEK293 , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Lectinas Tipo C/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/uso terapêutico , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
7.
JCI Insight ; 9(10)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775153

RESUMO

Small cell lung cancer (SCLC) is the most aggressive lung cancer entity with an extremely limited therapeutic outcome. Most patients are diagnosed at an extensive stage. However, the molecular mechanisms driving SCLC invasion and metastasis remain largely elusive. We used an autochthonous SCLC mouse model and matched samples from patients with primary and metastatic SCLC to investigate the molecular characteristics of tumor metastasis. We demonstrate that tumor cell invasion and liver metastasis in SCLC are triggered by an Angiopoietin-2 (ANG-2)/Integrin ß-1-dependent pathway in tumor cells, mediated by focal adhesion kinase/Src kinase signaling. Strikingly, CRISPR-Cas9 KO of Integrin ß-1 or blocking Integrin ß-1 signaling by an anti-ANG-2 treatment abrogates liver metastasis formation in vivo. Interestingly, analysis of a unique collection of matched samples from patients with primary and metastatic SCLC confirmed a strong increase of Integrin ß-1 in liver metastasis in comparison with the primary tumor. We further show that ANG-2 blockade combined with PD-1-targeted by anti-PD-1 treatment displays synergistic treatment effects in SCLC. Together, our data demonstrate a fundamental role of ANG-2/Integrin ß-1 signaling in SCLC cells for tumor cell invasion and liver metastasis and provide a potentially new effective treatment strategy for patients with SCLC.


Assuntos
Angiopoietina-2 , Integrina beta1 , Neoplasias Hepáticas , Neoplasias Pulmonares , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão , Animais , Feminino , Humanos , Masculino , Camundongos , Angiopoietina-2/metabolismo , Angiopoietina-2/genética , Linhagem Celular Tumoral , Integrina beta1/metabolismo , Integrina beta1/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Invasividade Neoplásica , Metástase Neoplásica , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico
8.
Cell Rep Med ; 5(2): 101421, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340727

RESUMO

Chimeric antigen receptor T cell (CAR T) therapy is a potent treatment for relapsed/refractory (r/r) B cell lymphomas but provides lasting remissions in only ∼40% of patients and is associated with serious adverse events. We identify an upregulation of CD80 and/or CD86 in tumor tissue of (r/r) diffuse large B cell lymphoma (DLBCL) patients treated with tisagenlecleucel. This finding leads to the development of the CAR/CCR (chimeric checkpoint receptor) design, which consists of a CD19-specific first-generation CAR co-expressed with a recombinant CTLA-4-linked receptor with a 4-1BB co-stimulatory domain. CAR/CCR T cells demonstrate superior efficacy in xenograft mouse models compared with CAR T cells, superior long-term activity, and superior selectivity in in vitro assays with non-malignant CD19+ cells. In addition, immunocompetent mice show an intact CD80-CD19+ B cell population after CAR/CCR T cell treatment. The results reveal the CAR/CCR design as a promising strategy for further translational study.


Assuntos
Linfoma Difuso de Grandes Células B , Linfócitos T , Humanos , Animais , Camundongos , Antígeno CTLA-4 , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/etiologia , Imunoterapia Adotiva/métodos , Linfócitos B , Antígenos CD19/genética
9.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606995

RESUMO

The discovery of frequent 8p11-p12 amplifications in squamous cell lung cancer (SQLC) has fueled hopes that FGFR1, located inside this amplicon, might be a therapeutic target. In a clinical trial, only 11% of patients with 8p11 amplification (detected by FISH) responded to FGFR kinase inhibitor treatment. To understand the mechanism of FGFR1 dependency, we performed deep genomic characterization of 52 SQLCs with 8p11-p12 amplification, including 10 tumors obtained from patients who had been treated with FGFR inhibitors. We discovered somatically altered variants of FGFR1 with deletion of exons 1-8 that resulted from intragenic tail-to-tail rearrangements. These ectodomain-deficient FGFR1 variants (ΔEC-FGFR1) were expressed in the affected tumors and were tumorigenic in both in vitro and in vivo models of lung cancer. Mechanistically, breakage-fusion-bridges were the source of 8p11-p12 amplification, resulting from frequent head-to-head and tail-to-tail rearrangements. Generally, tail-to-tail rearrangements within or in close proximity upstream of FGFR1 were associated with FGFR1 dependency. Thus, the genomic events shaping the architecture of the 8p11-p12 amplicon provide a mechanistic explanation for the emergence of FGFR1-driven SQLC. Specifically, we believe that FGFR1 ectodomain-deficient and FGFR1-centered amplifications caused by tail-to-tail rearrangements are a novel somatic genomic event that might be predictive of therapeutically relevant FGFR1 dependency.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Amplificação de Genes , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células Epiteliais/metabolismo
10.
Eur J Nucl Med Mol Imaging ; 39(7): 1117-27, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526960

RESUMO

PURPOSE: To evaluate the predictive value of early and late residual (18)F-fluorodeoxyglucose (FDG) and (18)F-fluorothymidine (FLT) uptake using different SUV measurements in PET in patients with advanced non-small-cell lung cancer (NSCLC) treated with erlotinib. METHODS: We retrospectively reviewed data from 30 patients with untreated stage IV NSCLC who had undergone a combined FDG PET and FLT PET scan at 1 week (early) and 6 weeks (late) after the start of erlotinib treatment. Early and late residual FDG and FLT uptake were measured in up to five lesions per scan with different quantitative standardized uptake values (SUV(max), SUV(2Dpeak), SUV(3Dpeak), SUV(50), SUV(A50), SUV(A41)) and compared with short-term outcome (progression vs. nonprogression after 6 weeks of erlotinib treatment). Receiver-operating characteristics (ROC) curve analysis was used to determine the optimal cut-off value for detecting nonprogression after 6 weeks. Kaplan-Meier analysis and the log-rank test were used to evaluate the association between residual uptake and progression-free survival (PFS). RESULTS: Nonprogression after 6 weeks was associated with a significantly lower early and late residual FDG uptake, measured with different quantitative parameters. In contrast, nonprogression after 6 weeks was not associated with early and late residual FLT uptake. Furthermore, patients with a lower early residual FDG uptake measured in terms of SUV(max) and SUV(2Dpeak) had a significantly prolonged PFS (282 days vs. 118 days; p = 0.022) than patients with higher values. Similarly, lower late residual FDG uptake and early residual FLT uptake measured in terms of SUV(3Dpeak), SUV(A50) and SUV(A41), and late FLT uptake measured in terms of SUV(3Dpeak) and SUV(A50) was associated with an improved PFS. CONCLUSION: Early and late residual FDG uptake, measured using different quantitative SUV parameters, are predictive factors for short-term outcome in patients with advanced NSCLC treated with erlotinib. Additionally, low residual FDG and FLT uptake early and late in the course of erlotinib treatment is associated with improved PFS.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Didesoxinucleosídeos/farmacocinética , Fluordesoxiglucose F18/farmacocinética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/uso terapêutico , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Análise Discriminante , Intervalo Livre de Doença , Cloridrato de Erlotinib , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Valor Preditivo dos Testes , Curva ROC , Compostos Radiofarmacêuticos/farmacocinética , Estudos Retrospectivos
11.
Proc Natl Acad Sci U S A ; 106(43): 18351-6, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19805051

RESUMO

In cancer, genetically activated proto-oncogenes often induce "upstream" dependency on the activity of the mutant oncoprotein. Therapeutic inhibition of these activated oncoproteins can induce massive apoptosis of tumor cells, leading to sometimes dramatic tumor regressions in patients. The PI3K and MAPK signaling pathways are central regulators of oncogenic transformation and tumor maintenance. We hypothesized that upstream dependency engages either one of these pathways preferentially to induce "downstream" dependency. Therefore, we analyzed whether downstream pathway dependency segregates by genetic aberrations upstream in lung cancer cell lines. Here, we show by systematically linking drug response to genomic aberrations in non-small-cell lung cancer, as well as in cell lines of other tumor types and in a series of in vivo cancer models, that tumors with genetically activated receptor tyrosine kinases depend on PI3K signaling, whereas tumors with mutations in the RAS/RAF axis depend on MAPK signaling. However, efficacy of downstream pathway inhibition was limited by release of negative feedback loops on the reciprocal pathway. By contrast, combined blockade of both pathways was able to overcome the reciprocal pathway activation induced by inhibitor-mediated release of negative feedback loops and resulted in a significant increase in apoptosis and tumor shrinkage. Thus, by using a systematic chemo-genomics approach, we identify genetic lesions connected to PI3K and MAPK pathway activation and provide a rationale for combined inhibition of both pathways. Our findings may have implications for patient stratification in clinical trials.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Genótipo , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Fosfoinositídeo-3 Quinase
12.
Cancers (Basel) ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36010935

RESUMO

EGFR-driven non-small-cell lung cancer (NSCLC) patients are currently treated with TKIs targeting EGFR, such as erlotinib or osimertinib. Despite a promising initial response to TKI treatment, most patients gain resistance to oncogene-targeted therapy, and tumours progress. With the development of inhibitors against immune checkpoints, such as PD-1, that mediate an immunosuppressive microenvironment, immunotherapy approaches attempt to restore a proinflammatory immune response in tumours. However, this strategy has shown only limited benefits in EGFR-driven NSCLC. Approaches combining EGFR inhibition with immunotherapy to stimulate the immune response and overcome resistance to therapy have been limited due to insufficient understanding about the effect of EGFR-targeting treatment on the immune cells in the TME. Here, we investigate the impact of EGFR inhibition by erlotinib on the TME and its effect on the antitumour response of the immune cell infiltrate. For this purpose, we used a transgenic conditional mouse model to study the immunological profile in EGFR-driven NSCLC tumours. We found that EGFR inhibition mediated a higher infiltration of immune cells and increased local proliferation of T-cells in the tumours. Moreover, inhibiting EGFR signalling led to increased activation of immune cells in the TME. Most strikingly, combined simultaneous blockade of EGFR and anti-PD-1 (aPD-1) enhanced tumour treatment response in a transgenic mouse model of EGFR-driven NSCLC. Thus, our findings show that EGFR inhibition promotes an active and proinflammatory immune cell infiltrate in the TME while improving response to immune checkpoint inhibitors in EGFR-driven NSCLC.

13.
Cancers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230712

RESUMO

INTRODUCTION: The Trophoblast cell surface antigen 2 (TROP2) is expressed in many carcinomas and may represent a target for treatment. Sacituzumab govitecan (SG) is a TROP2-directed antibody-drug conjugate (ADC). Nearly nothing is known about the biological effectiveness of SG in esophageal adenocarcinoma (EAC). MATERIAL AND METHODS: We determined the TROP2 expression in nearly 600 human EAC. In addition, we used the EAC cell lines (ESO-26, OACM5.1C, and FLO-1) and a xenograft mouse model to investigate this relationship. RESULTS: Of 598 human EACs analyzed, 88% showed varying degrees of TROP2 positivity. High TROP2 positive ESO-26 and low TROP2 positive OACM5.1C showed high sensitivity to SG in contrast to negative FLO-1. In vivo, the ESO-26 tumor shows a significantly better response to SG than the TROP2-negative FLO-1 tumor. ESO-26 vital tumor cells show similar TROP2 expression on all carcinoma cells as before therapy initiation, FLO-1 is persistently negative. DISCUSSION: Our data suggest that sacituzumab govitecan is a new therapy option in esophageal adenocarcinoma and the TROP2 expression in irinotecan-naïve EAC correlates with the extent of treatment response by sacituzumab govitecan. TROP2 is emerging as a predictive biomarker in completely TROP2-negative tumors. This should be considered in future clinical trials.

14.
J Immunother Cancer ; 10(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36223955

RESUMO

BACKGROUND: Single-agent immunotherapy has shown remarkable efficacy in selected cancer entities and individual patients. However, most patients fail to respond. This is likely due to diverse immunosuppressive mechanisms acting in a concerted way to suppress the host anti-tumor immune response. Combination immunotherapy approaches that are effective in such poorly immunogenic tumors mostly rely on precise knowledge of antigenic determinants on tumor cells. Creating an antigen-agnostic combination immunotherapy that is effective in poorly immunogenic tumors for which an antigenic determinant is not known is a major challenge. METHODS: We use multiple cell line and poorly immunogenic syngeneic, autochthonous, and autologous mouse models to evaluate the efficacy of a novel combination immunotherapy named tripartite immunotherapy (TRI-IT). To elucidate TRI-ITs mechanism of action we use immune cell depletions and comprehensive tumor and immune infiltrate characterization by flow cytometry, RNA sequencing and diverse functional assays. RESULTS: We show that combined adoptive cellular therapy (ACT) with lymphokine-activated killer cells, cytokine-induced killer cells, Vγ9Vδ2-T-cells (γδ-T-cells) and T-cells enriched for tumor recognition (CTLs) display synergistic antitumor effects, which are further enhanced by cotreatment with anti-PD1 antibodies. Most strikingly, the full TRI-IT protocol, a combination of this ACT with anti-PD1 antibodies, local immunotherapy of agonists against toll-like receptor 3, 7 and 9 and pre-ACT lymphodepletion, eradicates and induces durable anti-tumor immunity in a variety of poorly immunogenic syngeneic, autochthonous, as well as autologous humanized patient-derived models. Mechanistically, we show that TRI-IT coactivates adaptive cellular and humoral, as well as innate antitumor immune responses to mediate its antitumor effect without inducing off-target toxicity. CONCLUSIONS: Overall, TRI-IT is a novel, highly effective, antigen-agnostic, non-toxic combination immunotherapy. In this study, comprehensive insights into its preclinical efficacy, even in poorly immunogenic tumors, and mode of action are given, so that translation into clinical trials is the next step.


Assuntos
Neoplasias , Receptor 3 Toll-Like , Animais , Terapia Combinada , Epitopos , Imunoterapia/métodos , Camundongos , Neoplasias/terapia
15.
J Neurosci ; 30(18): 6454-60, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20445071

RESUMO

Neural stem cells reside in two major niches in the adult brain [i.e., the subventricular zone (SVZ) and the dentate gyrus of the hippocampus]. Insults to the brain such as cerebral ischemia result in a physiological mobilization of endogenous neural stem cells. Since recent studies showed that pharmacological stimulation can be used to expand the endogenous neural stem cell niche, hope has been raised to enhance the brain's own regenerative capacity. For the evaluation of such novel therapeutic approaches, longitudinal and intraindividual monitoring of the endogenous neural stem cell niche would be required. However, to date no conclusive imaging technique has been established. We used positron emission tomography (PET) and the radiotracer 3'-deoxy-3'-[(18)F]fluoro-l-thymidine ([(18)F]FLT) that enables imaging and measuring of proliferation to noninvasively detect endogenous neural stem cells in the normal and diseased adult rat brain in vivo. This method indeed visualized neural stem cell niches in the living rat brain, identified as increased [(18)F]FLT-binding in the SVZ and the hippocampus. Focal cerebral ischemia and subsequent damage of the blood-brain barrier did not interfere with the capability of [(18)F]FLT-PET to visualize neural stem cell mobilization. Moreover, [(18)F]FLT-PET allowed for an in vivo quantification of increased neural stem cell mobilization caused by pharmacological stimulation or by focal cerebral ischemia. The data suggest that noninvasive longitudinal monitoring and quantification of endogenous neural stem cell activation in the brain is feasible and that [(18)F]FLT-PET could be used to monitor the effects of drugs aimed at expanding the neural stem cell niche.


Assuntos
Neurônios/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Células-Tronco/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Didesoxinucleosídeos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Insulina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/fisiologia , Proteínas de Membrana/farmacologia , Neurônios/metabolismo , Ratos , Células-Tronco/metabolismo
16.
Mol Imaging ; 10(6): 453-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22201536

RESUMO

In patients with World Health Organization (WHO) grade III glioma with a lack of or minimal (< 1 cm3) magnetic resonance imaging (MRI) contrast enhancement, the volume of the metabolically active part of the tumor was assessed by [¹¹C]-methionine positron emission tomography (MET-PET). Eleven patients with WHO grade III gliomas underwent MET-PET and MRI (contrast-enhanced T1- and T2-weighted images). To calculate the volumes in cubic centimeters, threshold-based volume of interest analyses of the metabolically active tumor (MET uptake index ≥ 1.3), contrast enhancement, and the T2 lesion were performed after coregistration of all images. In all patients, the metabolically active tumor volume was larger than the volume of gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) enhancement (20.8 ± 18.8 vs 0.29 ± 0.25 cm3; p < .001). With the exception of one patient, the volumes of contrast enhancement were located within the metabolically active tumor volume. In contrast, in the majority of patients, MET uptake overlapped with the T2 lesion and reached beyond it (in 10 of 12 MRIs/MET-PET scans). The present data suggest that in patients with WHO grade III glioma with minimal or a lack of contrast enhancement, MET-PET delineates metabolically active tumor tissue. These findings support the use of combined PET-MRI with radiolabeled amino acids (eg, MET) for the delineating of the true extent of active tumor in the diagnosis and treatment planning of patients with gliomas.


Assuntos
Radioisótopos de Carbono , Glioma/diagnóstico por imagem , Metionina , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Adulto , Feminino , Gadolínio DTPA , Glioma/metabolismo , Glioma/patologia , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
17.
Pathol Oncol Res ; 27: 596522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257546

RESUMO

Purpose: Abrogation of Notch signaling, which is pivotal for lung development and pulmonary epithelial cell fate decisions was shown to be involved in the aggressiveness and the differentiation of lung carcinomas. Additionally, the transcription factors YAP and TAZ which are involved in the Hippo pathway, were recently shown to be tightly linked with Notch signaling and to regulate the cell fate in epidermal stem cells. Thus, we aim to elucidate the effects of conditional Notch1 deficiency on carcinogenesis and TAZ expression in lung cancer. Methods: We investigated the effect of conditional Cre-recombinase mediated Notch1 knock-out on lung cancer cells in vivo using an autochthonous mouse model of lung adenocarcinomas driven by Kras LSL-G12V and comprehensive immunohistochemical analysis. In addition, we analyzed clinical samples and human lung cancer cell lines for TAZ expression and supported our findings by publicly available data from The Cancer Genome Atlas (TCGA). Results: In mice, we found induction of papillary adenocarcinomas and protrusions of tumor cells from the bronchiolar lining upon Notch1 deficiency. Moreover, the mutated Kras driven lung tumors with deleted Notch1 showed increased TAZ expression and focal nuclear translocation which was frequently observed in human pulmonary adenocarcinomas and squamous cell carcinomas of the lung, but not in small cell lung carcinomas. In addition, we used data from TCGA to show that putative inactivating NOTCH1 mutations co-occur with KRAS mutations and genomic amplifications in lung adenocarcinomas. Conclusion: Our in vivo study provides evidence that Notch1 deficiency in mutated Kras driven lung carcinomas contributes to lung carcinogenesis in a subgroup of patients by increasing TAZ expression who might benefit from TAZ signaling blockade.


Assuntos
Aciltransferases/metabolismo , Brônquios/patologia , Modelos Animais de Doenças , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor Notch1/fisiologia , Aciltransferases/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Brônquios/metabolismo , Carcinogênese , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Prognóstico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Células Tumorais Cultivadas
18.
Med ; 2(10): 1171-1193.e11, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-35590205

RESUMO

BACKGROUND: Individualization of treatment in Hodgkin's lymphoma is necessary to improve cure rates and reduce treatment side effects. Currently, it is hindered by a lack of genomic characterization and sensitive molecular response assessment. Sequencing of cell-free DNA is a powerful strategy to understand the cancer genome and can be used for extremely sensitive disease monitoring. In Hodgkin's lymphoma, a high proportion of cell-free DNA is tumor-derived, whereas traditional tumor biopsies only contain a little tumor-derived DNA. METHODS: We comprehensively genotype and assess minimal residual disease in 121 patients with baseline plasma as well as 77 follow-up samples from a subset of patients with our targeted cell-free DNA sequencing platform. FINDINGS: We present an integrated landscape of mutations and copy number variations in Hodgkin's lymphoma. In addition, we perform a deep analysis of mutational processes driving Hodgkin's lymphoma, investigate the clonal structure of Hodgkin's lymphoma, and link several genotypes to Hodgkin's lymphoma phenotypes and outcome. Finally, we show that minimal residual disease assessment by repeat cell-free DNA sequencing, as early as a week after treatment initiation, predicts treatment response and progression-free survival, allowing highly improved treatment guidance and relapse prediction. CONCLUSIONS: Our targeted cell-free DNA sequencing platform reveals the genomic landscape of Hodgkin's lymphoma and facilitates ultrasensitive detection of minimal residual disease. FUNDING: Mildred Scheel School of Oncology Aachen-Bonn-Cologne-Düsseldorf MD Research Stipend, Next Generation Sequencing Competence Network grant 423957469, Deutsche Krebshilfe grant 70112502, Deutsche Forschungsgemeinschaft (DFG) grant EN 179/13-1, the HL MRD consortium, and the Frau-Weiskam und Christel Ruranski-Stiftung.


Assuntos
Ácidos Nucleicos Livres , Doença de Hodgkin , Ácidos Nucleicos Livres/genética , Variações do Número de Cópias de DNA/genética , Genômica , Doença de Hodgkin/diagnóstico , Humanos , Recidiva Local de Neoplasia , Neoplasia Residual/diagnóstico , Análise de Sequência de DNA
19.
Nat Commun ; 12(1): 5505, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535668

RESUMO

Kinase inhibitors suppress the growth of oncogene driven cancer but also enforce the selection of treatment resistant cells that are thought to promote tumor relapse in patients. Here, we report transcriptomic and functional genomics analyses of cells and tumors within their microenvironment across different genotypes that persist during kinase inhibitor treatment. We uncover a conserved, MAPK/IRF1-mediated inflammatory response in tumors that undergo stemness- and senescence-associated reprogramming. In these tumor cells, activation of the innate immunity sensor RIG-I via its agonist IVT4, triggers an interferon and a pro-apoptotic response that synergize with concomitant kinase inhibition. In humanized lung cancer xenografts and a syngeneic Egfr-driven lung cancer model these effects translate into reduction of exhausted CD8+ T cells and robust tumor shrinkage. Overall, the mechanistic understanding of MAPK/IRF1-mediated intratumoral reprogramming may ultimately prolong the efficacy of targeted drugs in genetically defined cancer patients.


Assuntos
Proteína DEAD-box 58/metabolismo , Imunidade Inata , Inflamação/patologia , Sistema de Sinalização das MAP Quinases , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores Imunológicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citocinas/metabolismo , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Fator Regulador 1 de Interferon/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Oncogenes , Transdução de Sinais/efeitos dos fármacos
20.
Mol Imaging ; 9(1): 40-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20128997

RESUMO

We present two patients with glioblastoma with an unusually stable clinical course and long-term survival who were treated after surgery and radiotherapy with adjuvant temozolomide (TMZ) chemotherapy for 17 and 20 cycles, respectively. Afterward, adjuvant TMZ chemotherapy was discontinued in one patient and the dosage of TMZ was reduced in the other. In addition to clinical status and magnetic resonance imaging, the biologic activity of the tumors was monitored by repeated methyl-11C-l-methionine (MET) and 3'-deoxy-3'-18F-fluorothymidine (FLT) positron emission tomography (PET) studies in these patients. In these patients, repeated MET- and FLT-PET imaging documented complete response to the initial treatment regimen, including resection, radiation, and TMZ, and during the course of the disease, recurrent, uncontrollable tumor activity. Continuation or dose escalation of TMZ in both patients was shown to be ineffective to overcome the metabolic activity of the tumor. Our data suggest that repeated MET- and FLT-PET imaging provide information on the biologic activity of a tumor that is highly useful to monitor and detect changes in activity.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Compostos Radiofarmacêuticos , Adulto , Neoplasias Encefálicas/metabolismo , Radioisótopos de Carbono , Dacarbazina/uso terapêutico , Didesoxinucleosídeos/farmacocinética , Radioisótopos de Flúor , Glioblastoma/metabolismo , Humanos , Metionina/análogos & derivados , Pessoa de Meia-Idade , Cintilografia , Compostos Radiofarmacêuticos/farmacocinética , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA