Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cell ; 161(4): 907-18, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25913191

RESUMO

In flowering plants, fertilization-dependent degeneration of the persistent synergid cell ensures one-on-one pairings of male and female gametes. Here, we report that the fusion of the persistent synergid cell and the endosperm selectively inactivates the persistent synergid cell in Arabidopsis thaliana. The synergid-endosperm fusion causes rapid dilution of pre-secreted pollen tube attractant in the persistent synergid cell and selective disorganization of the synergid nucleus during the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling, an inducer of the synergid nuclear disorganization. Therefore, two female gametes (the egg and the central cell) control independent pathways yet coordinately accomplish the elimination of the persistent synergid cell by double fertilization.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Arabidopsis/embriologia , Fusão Celular , Endosperma/metabolismo , Mitose , Peptídeos/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo
2.
Genes Dev ; 31(6): 617-627, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404632

RESUMO

In many plants, the asymmetric division of the zygote sets up the apical-basal axis of the embryo. Unlike animals, plant zygotes are transcriptionally active, implying that plants have evolved specific mechanisms to control transcriptional activation of patterning genes in the zygote. In Arabidopsis, two pathways have been found to regulate zygote asymmetry: YODA (YDA) mitogen-activated protein kinase (MAPK) signaling, which is potentiated by sperm-delivered mRNA of the SHORT SUSPENSOR (SSP) membrane protein, and up-regulation of the patterning gene WOX8 by the WRKY2 transcription factor. How SSP/YDA signaling is transduced into the nucleus and how these pathways are integrated have remained elusive. Here we show that paternal SSP/YDA signaling directly phosphorylates WRKY2, which in turn leads to the up-regulation of WOX8 transcription in the zygote. We further discovered the transcription factors HOMEODOMAIN GLABROUS11/12 (HDG11/12) as maternal regulators of zygote asymmetry that also directly regulate WOX8 transcription. Our results reveal a framework of how maternal and paternal factors are integrated in the zygote to regulate embryo patterning.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Transcrição Gênica , Zigoto/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Sistema de Sinalização das MAP Quinases , Herança Materna , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Herança Paterna , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zigoto/enzimologia
3.
J Exp Bot ; 75(5): 1364-1375, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37882240

RESUMO

In Arabidopsis roots, the quiescent center (QC), a group of slowly dividing cells located at the center of the stem cell niche, functions as an organizing center to maintain the stemness of neighboring cells. Recent studies have shown that they also act as a reservoir for backup cells, which replenish DNA-damaged stem cells by activating cell division. The latter function is essential for maintaining stem cells under stressful conditions, thereby guaranteeing post-embryonic root development in fluctuating environments. In this study, we show that one of the brassinosteroid receptors in Arabidopsis, BRASSINOSTEROID INSENSITIVE1-LIKE3 (BRL3), plays a major role in activating QC division in response to DNA double-strand breaks. SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor governing DNA damage response, directly induces BRL3. DNA damage-induced QC division was completely suppressed in brl3 mutants, whereas QC-specific overexpression of BRL3 activated QC division. Our data also showed that BRL3 is required to induce the AP2-type transcription factor ETHYLENE RESPONSE FACTOR 115, which triggers regenerative cell division. We propose that BRL3-dependent brassinosteroid signaling plays a unique role in activating QC division and replenishing dead stem cells, thereby enabling roots to restart growing after recovery from genotoxic stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Proteínas de Arabidopsis/genética , Divisão Celular , Raízes de Plantas , Fatores de Transcrição/genética , DNA , Meristema
4.
Plant Cell Physiol ; 64(10): 1231-1242, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37647615

RESUMO

ACTIN DEPOLYMERIZING FACTOR (ADF) is a conserved protein that regulates the organization and dynamics of actin microfilaments. Eleven ADFs in the Arabidopsis thaliana genome are grouped into four subclasses, and subclass I ADFs, ADF1-4, are all expressed throughout the plant. Previously, we showed that subclass I ADFs function in the regulation of the response against powdery mildew fungus as well as in the regulation of cell size and endoreplication. Here, we report a new role of subclass I ADFs in the regulation of nuclear organization and gene expression. Through microscopic observation of epidermal cells in mature leaves, we found that the size of chromocenters in both adf4 and transgenic lines where expression of subclass I ADFs is downregulated (ADF1-4Ri) was reduced compared with that of wild-type Col-0. Arabidopsis thaliana possesses eight ACTIN (ACT) genes, among which ACT2, -7 and -8 are expressed in vegetative organs. The chromocenter size in act7, but not in the act2/8 double mutant, was enlarged compared with that in Col-0. Microarray analysis revealed that 1,818 genes were differentially expressed in adf4 and ADF1-4Ri. In particular, expression of 22 nucleotide-binding leucine-rich repeat genes, which are involved in effector-triggered plant immunity, was reduced in adf4 and ADF1-4Ri. qRT-PCR confirmed the altered expressions shown with microarray analysis. Overall, these results suggest that ADF regulates various aspects of plant physiology through its role in regulation of nuclear organization and gene expression. The mechanism how ADF and ACT regulate nuclear organization and gene expression is discussed.

5.
J Exp Bot ; 74(12): 3579-3594, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36912789

RESUMO

Root hairs are single-celled tubular structures produced from the epidermis, which play an essential role in water and nutrient uptake from the soil. Therefore, root hair formation and elongation are controlled not only by developmental programs but also by environmental factors, enabling plants to survive under fluctuating conditions. Phytohormones are key signals that link environmental cues to developmental programs; indeed, root hair elongation is known to be controlled by auxin and ethylene. Another phytohormone, cytokinin, also affects root hair growth, while whether cytokinin is actively involved in root hair growth and, if so, how it regulates the signaling pathway governing root hair development have remained unknown. In this study, we show that the two-component system of cytokinin, which involves the B-type response regulators ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) and ARR12, promotes the elongation process of root hairs. They directly up-regulate ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) encoding a basic helix-loop-helix (bHLH) transcription factor that plays a central role in root hair growth, whereas the ARR1/12-RSL4 pathway does not crosstalk with auxin or ethylene signaling. These results indicate that cytokinin signaling constitutes another input onto the regulatory module governed by RSL4, making it possible to fine-tune root hair growth in changing environments.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Etilenos/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais/fisiologia , Regulação da Expressão Gênica de Plantas
6.
Proc Natl Acad Sci U S A ; 117(49): 31500-31509, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33219124

RESUMO

Active membrane transport of plant hormones and their related compounds is an essential process that determines the distribution of the compounds within plant tissues and, hence, regulates various physiological events. Here, we report that the Arabidopsis NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY 7.3 (NPF7.3) protein functions as a transporter of indole-3-butyric acid (IBA), a precursor of the major endogenous auxin indole-3-acetic acid (IAA). When expressed in yeast, NPF7.3 mediated cellular IBA uptake. Loss-of-function npf7.3 mutants showed defective root gravitropism with reduced IBA levels and auxin responses. Nevertheless, the phenotype was restored by exogenous application of IAA but not by IBA treatment. NPF7.3 was expressed in pericycle cells and the root tip region including root cap cells of primary roots where the IBA-to-IAA conversion occurs. Our findings indicate that NPF7.3-mediated IBA uptake into specific cells is required for the generation of appropriate auxin gradients within root tissues.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Gravitropismo , Indóis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Gravitropismo/efeitos dos fármacos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Indóis/química , Indóis/farmacologia , Mutação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética
7.
Plant J ; 106(2): 326-335, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33533118

RESUMO

Plant stem cells have several extraordinary features: they are generated de novo during development and regeneration, maintain their pluripotency, and produce another stem cell niche in an orderly manner. This enables plants to survive for an extended period and to continuously make new organs, representing a clear difference in their developmental program from animals. To uncover regulatory principles governing plant stem cell characteristics, our research project 'Principles of pluripotent stem cells underlying plant vitality' was launched in 2017, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Japanese government. Through a collaboration involving 28 research groups, we aim to identify key factors that trigger epigenetic reprogramming and global changes in gene networks, and thereby contribute to stem cell generation. Pluripotent stem cells in the shoot apical meristem are controlled by cytokinin and auxin, which also play a crucial role in terminating stem cell activity in the floral meristem; therefore, we are focusing on biosynthesis, metabolism, transport, perception, and signaling of these hormones. Besides, we are uncovering the mechanisms of asymmetric cell division and of stem cell death and replenishment under DNA stress, which will illuminate plant-specific features in preserving stemness. Our technology support groups expand single-cell omics to describe stem cell behavior in a spatiotemporal context, and provide correlative light and electron microscopic technology to enable live imaging of cell and subcellular dynamics at high spatiotemporal resolution. In this perspective, we discuss future directions of our ongoing projects and related research fields.


Assuntos
Longevidade/fisiologia , Células Vegetais/fisiologia , Desenvolvimento Vegetal/fisiologia , Células-Tronco/fisiologia , Epigênese Genética , Reguladores de Crescimento de Plantas/fisiologia , Plantas , Pesquisa/tendências
8.
Plant Cell Physiol ; 63(3): 369-383, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016226

RESUMO

Cleavage and polyadenylation at the 3' end of the pre-mRNA is essential for mRNA function, by regulating its translatability, stability and translocation to the cytoplasm. Cleavage factor I (CFI) is a multi-subunit component of the pre-mRNA 3' end processing machinery in eukaryotes. Here, we report that plant CFI 25 subunit of CFI plays an important role in maintaining the diversity of the 3' ends of mRNA. The genome of Arabidopsis thaliana (L.) Heynh. contained four genes encoding three putative CFI subunits (AtCFI 25, AtCFI 59 and AtCFI 68), orthologous to the mammalian CFI subunits. There were two CFI 25 paralogs (AtCFI 25a and AtCFI 25b) that shared homology with human CFI 25. Two null alleles of AtCFI 25a displayed smaller rosette leaves, longer stigmatic papilla, smaller anther, earlier flowering and lower fertility compared to wild-type plants. Null alleles of AtCFI 25b, as well as, plants ectopically expressing full-length cDNA of AtCFI 25a, displayed no obvious morphological defects. AtCFI 25a was shown to interact with AtCFI 25b, AtCFI 68 and itself, suggesting various forms of CFI in plants. Furthermore, we show that AtCFI 25a function was essential for maintaining proper diversity of the 3' end lengths of transcripts coding for CFI subunits, suggesting a self-regulation of the CFI machinery in plants. AtCFI 25a was also important to maintain 3' ends for other genes to different extent. Collectively, AtCFI 25a, but not AtCFI 25b, seemed to play important roles during Arabidopsis development by maintaining proper diversity of the 3' UTR lengths.


Assuntos
Arabidopsis , Animais , Regiões 3' não Traduzidas/genética , Arabidopsis/genética , Fibrinogênio , Poliadenilação/genética
9.
Plant Physiol ; 186(3): 1734-1746, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33909905

RESUMO

The cytokinin (CK) phytohormones have long been known to activate cell proliferation in plants. However, how CKs regulate cell division and cell expansion remains unclear. Here, we reveal that a basic helix-loop-helix transcription factor, CYTOKININ-RESPONSIVE GROWTH REGULATOR (CKG), mediates CK-dependent regulation of cell expansion and cell cycle progression in Arabidopsis thaliana. The overexpression of CKG increased cell size in a ploidy-independent manner and promoted entry into the S phase of the cell cycle, especially at the seedling stage. Furthermore, CKG enhanced organ growth in a pleiotropic fashion, from embryogenesis to reproductive stages, particularly of cotyledons. In contrast, ckg loss-of-function mutants exhibited smaller cotyledons. CKG mainly regulates the expression of genes involved in the regulation of the cell cycle including WEE1. We propose that CKG provides a regulatory module that connects cell cycle progression and organ growth to CK responses.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Ciclo Celular/genética , Divisão Celular/genética , Proliferação de Células/genética , Citocininas/genética , Citocininas/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas
10.
J Plant Res ; 134(6): 1291-1300, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34282484

RESUMO

Endoreplication is a type of cell cycle where genome replication occurs without mitosis. An increase of ploidy level by endoreplication is often associated with cell enlargement and an enhanced plant growth. Here we report Arabidopsis thaliana subclass I ACTIN DEPOLYMERIZING FACTORs (ADFs) and vegetative ACTIN2/8 as novel regulators of endoreplication. A. thaliana has 11 ADF members that are divided into 4 subclasses. Subclass I consists of four members, ADF1, -2, -3, and -4, all of which constitutively express in various tissues. We found that both adf4 knockout mutant and transgenic plants in which expressions of all of four subclass I ADFs are suppressed (ADF1-4Ri) showed an increased leaf area of mature first leaves, which was associated with a significant increase of epidermal pavement cell area. Ploidy analysis revealed that the ploidy level was significantly increased in mature leaves of ADF1-4Ri. The increased ploidy was also observed in roots of adf4 and ADF1-4Ri, as well as in dark-grown hypocotyls of adf4. Furthermore, double mutants of vegetative ACT2 and ACT8 (act2/8) exhibited an increase of leaf area and ploidy level in mature leaves. Therefore, actin-relating pathway could regulate endoreplication. The possible mechanisms that actin and ADFs regulate endoreplication are discussed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endorreduplicação , Regulação da Expressão Gênica de Plantas , Hipocótilo
11.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638727

RESUMO

Genome integrity is constantly threatened by internal and external stressors, in both animals and plants. As plants are sessile, a variety of environment stressors can damage their DNA. In the nucleus, DNA twines around histone proteins to form the higher-order structure "chromatin". Unraveling how chromatin transforms on sensing genotoxic stress is, thus, key to understanding plant strategies to cope with fluctuating environments. In recent years, accumulating evidence in plant research has suggested that chromatin plays a crucial role in protecting DNA from genotoxic stress in three ways: (1) changes in chromatin modifications around damaged sites enhance DNA repair by providing a scaffold and/or easy access to DNA repair machinery; (2) DNA damage triggers genome-wide alterations in chromatin modifications, globally modulating gene expression required for DNA damage response, such as stem cell death, cell-cycle arrest, and an early onset of endoreplication; and (3) condensed chromatin functions as a physical barrier against genotoxic stressors to protect DNA. In this review, we highlight the chromatin-level control of genome stability and compare the regulatory systems in plants and animals to find out unique mechanisms maintaining genome integrity under genotoxic stress.


Assuntos
Cromatina/metabolismo , Dano ao DNA , Reparo do DNA , Genoma Humano , Instabilidade Genômica , Animais , Cromatina/genética , Humanos
12.
Plant Mol Biol ; 103(3): 321-340, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32277429

RESUMO

Plants live in constantly changing and often unfavorable or stressful environments. Environmental changes induce biotic and abiotic stress, which, in turn, may cause genomic DNA damage. Hence, plants simultaneously suffer abiotic/biotic stress and DNA damage. However, little information is available on the signaling crosstalk that occurs between DNA damage and abiotic/biotic stresses. Arabidopsis thaliana SUPPRESSOR OF GAMMA RESPONSE1 (SOG1) is a pivotal transcription factor that regulates thousands of genes in response to DNA double-strand break (DSB), and we recently reported that SOG1 has a role in immune responses. In the present study, the effects of SOG1 overexpression on the DNA damage and immune responses were examined. Results found that SOG1 overexpression enhances the regulation of numerous downstream genes. Relative to the wild type plants, then, DNA damage responses were observed to be strongly induced. SOG1 overexpression also upregulates chitin (a major components of fungal cell walls) responsive genes in the presence of DSBs, implying that pathogen defense response is activated by DNA damage via SOG1. Further, SOG1 overexpression enhances fungal resistance. These results suggest that SOG1 regulates crosstalk between DNA damage response and the immune response and that plants have evolved a sophisticated defense network to contend with environmental stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dano ao DNA/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Apoptose/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , DNA de Plantas , Regulação da Expressão Gênica de Plantas/imunologia , Folhas de Planta/citologia , Ligação Proteica , Estresse Fisiológico , Fatores de Transcrição/genética
13.
EMBO J ; 35(19): 2068-2086, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27497297

RESUMO

Upon DNA damage, cyclin-dependent kinases (CDKs) are typically inhibited to block cell division. In many organisms, however, it has been found that CDK activity is required for DNA repair, especially for homology-dependent repair (HR), resulting in the conundrum how mitotic arrest and repair can be reconciled. Here, we show that Arabidopsis thaliana solves this dilemma by a division of labor strategy. We identify the plant-specific B1-type CDKs (CDKB1s) and the class of B1-type cyclins (CYCB1s) as major regulators of HR in plants. We find that RADIATION SENSITIVE 51 (RAD51), a core mediator of HR, is a substrate of CDKB1-CYCB1 complexes. Conversely, mutants in CDKB1 and CYCB1 fail to recruit RAD51 to damaged DNA CYCB1;1 is specifically activated after DNA damage and we show that this activation is directly controlled by SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a transcription factor that acts similarly to p53 in animals. Thus, while the major mitotic cell-cycle activity is blocked after DNA damage, CDKB1-CYCB1 complexes are specifically activated to mediate HR.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclina B/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Reparo de DNA por Recombinação , Proteínas de Arabidopsis/genética , Ciclina B/genética , Quinases Ciclina-Dependentes/genética , Rad51 Recombinase/metabolismo , Fatores de Transcrição/metabolismo
14.
Plant J ; 94(3): 439-453, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29430765

RESUMO

In mammalian cells, the transcription factor p53 plays a crucial role in transmitting DNA damage signals to maintain genome integrity. However, in plants, orthologous genes for p53 and checkpoint proteins are absent. Instead, the plant-specific transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) controls most of the genes induced by gamma irradiation and promotes DNA repair, cell cycle arrest, and stem cell death. To date, the genes directly controlled by SOG1 remain largely unknown, limiting the understanding of DNA damage signaling in plants. Here, we conducted a microarray analysis and chromatin immunoprecipitation (ChIP)-sequencing, and identified 146 Arabidopsis genes as direct targets of SOG1. By using ChIP-sequencing data, we extracted the palindromic motif [CTT(N)7 AAG] as a consensus SOG1-binding sequence, which mediates target gene induction in response to DNA damage. Furthermore, DNA damage-triggered phosphorylation of SOG1 is required for efficient binding to the SOG1-binding sequence. Comparison between SOG1 and p53 target genes showed that both transcription factors control genes responsible for cell cycle regulation, such as CDK inhibitors, and DNA repair, whereas SOG1 preferentially targets genes involved in homologous recombination. We also found that defense-related genes were enriched in the SOG1 target genes. Consistent with this finding, SOG1 is required for resistance against the hemi-biotrophic fungus Colletotrichum higginsianum, suggesting that SOG1 has a unique function in controlling the immune response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Dano ao DNA/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Reparo do DNA/genética , Genes p53/genética , Sequências Repetidas Invertidas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação
15.
Plant Cell Physiol ; 60(8): 1842-1854, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135032

RESUMO

Cytokinins are known to regulate various physiological events in plants. Cytokinin signaling is mediated by the phosphorelay system, one of the most ancient mechanisms controlling hormonal pathways in plants. The liverwort Marchantia polymorpha possesses all components necessary for cytokinin signaling; however, whether they respond to cytokinins and how the signaling is fine-tuned remain largely unknown. Here, we report cytokinin function in Marchantia development and organ formation. Our measurement of cytokinin species revealed that cis-zeatin is the most abundant cytokinin in Marchantia. We reduced the endogenous cytokinin level by overexpressing the gene for cytokinin oxidase, MpCKX, which inactivates cytokinins, and generated overexpression and knockout lines for type-A (MpRRA) and type-B (MpRRB) response regulators to manipulate the signaling. The overexpression lines of MpCKX and MpRRA, and the knockout lines of MpRRB, shared phenotypes such as inhibition of gemma cup formation, enhanced rhizoid formation and hyponastic thallus growth. Conversely, the knockout lines of MpRRA produced more gemma cups and exhibited epinastic thallus growth. MpRRA expression was elevated by cytokinin treatment and reduced by knocking out MpRRB, suggesting that MpRRA is upregulated by the MpRRB-mediated cytokinin signaling, which is antagonized by MpRRA. Our findings indicate that when plants moved onto land they already deployed the negative feedback loop of cytokinin signaling, which has an indispensable role in organogenesis.


Assuntos
Citocininas/metabolismo , Marchantia/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Marchantia/genética , Organogênese Vegetal/genética , Organogênese Vegetal/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
16.
EMBO J ; 34(15): 1992-2007, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26069325

RESUMO

In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size.


Assuntos
Arabidopsis/fisiologia , Ciclo Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Organogênese/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Espectrometria de Massas , Análise em Microsséries , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
17.
Plant Physiol ; 178(3): 1130-1141, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30185441

RESUMO

Root growth is controlled by mechanisms underlying cell division and cell elongation, which respond to various internal and external factors. In Arabidopsis (Arabidopsis thaliana), cells produced in the proximal meristem (PM) elongate and differentiate in the transition zone (TZ) and the elongation/differentiation zone (EDZ). Previous studies have demonstrated that endoreplication is involved in root cell elongation; however, the manner by which cells increase in length by more than 2-fold remains unknown. Here, we show that epidermal and cortical cells in Arabidopsis roots undergo two modes of rapid cell elongation: the first rapid cell elongation occurs at the border of the proximal meristem and the TZ, and the second mode occurs during the transition from the TZ to the EDZ. Our previous study showed that cytokinin signaling promotes endoreplication, which triggers the first rapid cell elongation. Our cytological and genetic data revealed that the second rapid cell elongation involves dynamic actin reorganization independent of endoreplication. Cytokinins promote actin bundling and the resultant second rapid cell elongation through activating the signaling pathway involving the cytokinin receptors ARABIDOPSIS HISTIDINE KINASE3 (AHK3) and AHK4 and the B-type transcription factor ARABIDOPSIS RESPONSE REGULATOR2. Our results suggest that cytokinins promote the two modes of rapid cell elongation by controlling distinct cellular events: endoreplication and actin reorganization.


Assuntos
Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Citocininas/metabolismo , Histidina Quinase/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Divisão Celular , Crescimento Celular , Endorreduplicação , Regulação da Expressão Gênica de Plantas , Histidina Quinase/genética , Modelos Biológicos , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais , Fatores de Transcrição/genética
19.
Genes Cells ; 21(11): 1195-1208, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27658920

RESUMO

Lateral roots (LRs) are an important organ for water and nutrient uptake from soil. Thus, control of LR formation is crucial in the adaptation of plant growth to environmental conditions. However, the underlying mechanism controlling LR formation in response to external factors has remained largely unknown. Here, we found that LR formation was inhibited by DNA damage. Treatment with zeocin, which causes DNA double-strand breaks, up-regulated several DNA repair genes in the LR primordium (LRP) through the signaling pathway mediated by the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1). Cell division was severely inhibited in the LRP of zeocin-treated sog1-1 mutant, which in turn inhibited LR formation. This result suggests that SOG1-mediated maintenance of genome integrity is crucial for proper cell division during LRP development. Furthermore, zeocin induced several cytokinin biosynthesis genes in a SOG1-dependent manner, thereby activating cytokinin signaling in the LRP. LR formation was less inhibited by zeocin in mutants defective in cytokinin biosynthesis or signaling, suggesting that elevated cytokinin signaling is crucial for the inhibition of LR formation in response to DNA damage. We conclude that SOG1 regulates DNA repair and cytokinin signaling separately and plays a key role in controlling LR formation under genotoxic stress.


Assuntos
Arabidopsis/genética , Citocininas/genética , Dano ao DNA , DNA de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Bleomicina/farmacologia , Divisão Celular/genética , Citocininas/biossíntese , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mutação , Raízes de Plantas/efeitos dos fármacos , Transdução de Sinais , Fatores de Transcrição/metabolismo
20.
Plant Cell ; 26(1): 296-309, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24399300

RESUMO

Whereas our knowledge about the diverse pathways aiding DNA repair upon genome damage is steadily increasing, little is known about the molecular players that adjust the plant cell cycle in response to DNA stress. By a meta-analysis of DNA stress microarray data sets, three family members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) class of cyclin-dependent kinase inhibitors were discovered that react strongly to genotoxicity. Transcriptional reporter constructs corroborated specific and strong activation of the three SIM/SMR genes in the meristems upon DNA stress, whereas overexpression analysis confirmed their cell cycle inhibitory potential. In agreement with being checkpoint regulators, SMR5 and SMR7 knockout plants displayed an impaired checkpoint in leaf cells upon treatment with the replication inhibitory drug hydroxyurea (HU). Surprisingly, HU-induced SMR5/SMR7 expression depends on ATAXIA TELANGIECTASIA MUTATED (ATM) and SUPPRESSOR OF GAMMA RESPONSE1, rather than on the anticipated replication stress-activated ATM AND RAD3-RELATED kinase. This apparent discrepancy was explained by demonstrating that, in addition to its effect on replication, HU triggers the formation of reactive oxygen species (ROS). ROS-dependent transcriptional activation of the SMR genes was confirmed by different ROS-inducing conditions, including high-light treatment. We conclude that the identified SMR genes are part of a signaling cascade that induces a cell cycle checkpoint in response to ROS-induced DNA damage.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/fisiologia , Dano ao DNA , Espécies Reativas de Oxigênio/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Hidroxiureia/farmacologia , Estresse Oxidativo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA