Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 44(1): 215-26, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24105635

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of antinucleic acid autoantibodies, high levels of circulating type I interferon (IFN-I), and an IFN-I-dependent elevated expression of activating FcγR. Increases in neutrophils and monocytes are often observed in clinical SLE, but how these contribute to autoantibody and IFN-I production is poorly understood. Here, we analyzed SLE pathogenesis in 564Igi mice, an SLE-model strain carrying gene-targeted heavy and light chain antibody genes encoding an anti-RNA autoantibody in a C57BL/6 background. Similar to human SLE patients, 564Igi mice produce anti-RNA autoantibodies and expanded neutrophil and monocyte populations. These myeloid cells produced IFN-I and exhibit increased FcγRIV expression induced via an IFN-I autocrine loop. A direct effect of IFN-I on 56 Igi BM B cells and neutrophils was supported by their upregulation of "IFN-I signature genes". In addition, 564Igi developing B cells showed upregulated TLR7 resulting in IgG2a/2b class switch recombination and autoantibody production. Our results indicate that the production of anti-RNA autoantibody is sufficient to induce an increase of BM, blood, and spleen IFN-I-producing neutrophils, and suggest a mechanism by which autoantibody and IFN-I contribute to SLE by activating B lymphocytes, neutrophils, and monocyte effector cells in vivo.


Assuntos
Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Animais , Autoanticorpos/metabolismo , Comunicação Autócrina , Processos de Crescimento Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Genes de Imunoglobulinas/genética , Humanos , Imunoglobulina G/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA/imunologia , Receptores de IgG/metabolismo , Receptor 7 Toll-Like/metabolismo
2.
Eur J Immunol ; 44(10): 3093-108, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044405

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of pathogenic IgG antinuclear antibodies. Pathogenic IgG autoantibody production requires B-cell activation, leading to the production of activation-induced deaminase (AID) and class switching of IgM genes to IgG. To understand how and when B cells are activated to produce these IgG autoantibodies, we studied cells from 564Igi, a mouse model of SLE. 564Igi mice develop a disease profile closely resembling that found in human SLE patients, including the presence of IgG antinucleic acid Abs. We have generated 564Igi mice that conditionally express an activation-induced cytidine deaminase transgene (Aicda(tg) ), either in all B cells or only in mature B cells. Here, we show that class-switched pathogenic IgG autoantibodies were produced only in 564Igi mice in which AID was functional in early-developing B cells, resulting in loss of tolerance. Furthermore, we show that the absence of AID in early-developing B cells also results in increased production of self-reactive IgM, indicating that AID, through somatic hypermutation, contributes to tolerance. Our results suggest that the pathophysiology of clinical SLE might also be dependent on AID expression in early-developing B cells.


Assuntos
Anticorpos Antinucleares/imunologia , Linfócitos B/imunologia , Citidina Desaminase/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Animais , Formação de Anticorpos/imunologia , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Autoantígenos/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Tolerância Imunológica/imunologia , Switching de Imunoglobulina/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
3.
Eur J Immunol ; 44(5): 1503-16, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24500834

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease with a high incidence in females and a complex phenotype. Using 564Igi mice, a model of SLE with knock-in genes encoding an autoreactive anti-RNA Ab, we investigated how expression of Toll-like receptors (TLRs) in B cells and neutrophils affects pathogenesis. We established that TLR signaling through MyD88 is necessary for disease. Autoantibody was produced in mice with single deletions of Tlr7, Tlr8, or Tlr9 or combined deletions of Tlr7 and Tlr9. Autoantibody was not produced in the combined absence of Tlr7 and Tlr8, indicating that TLR8 contributes to the break in tolerance. Furthermore, TLR8 was sufficient for the loss of B-cell tolerance, the production of class-switched autoantibody, heightened granulopoiesis, and increased production of type I IFN by neutrophils as well as glomerulonephritis and death. We show that dosage of X-linked Tlr8 plays a major role in the high incidence of disease in females. In addition, we show that the negative regulation of disease by TLR9 is exerted primarily on granulopoiesis and type I IFN production by neutrophils. Collectively, we suggest that individual TLRs play unique roles in the pathogenesis of systemic lupus erythematosus, suggesting new targets for treatment.


Assuntos
Dosagem de Genes/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Caracteres Sexuais , Receptor 8 Toll-Like/imunologia , Cromossomo X/imunologia , Animais , Autoanticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Feminino , Dosagem de Genes/genética , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mielopoese/genética , Mielopoese/imunologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/genética , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Cromossomo X/genética
4.
Vet Immunol Immunopathol ; 170: 13-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26872626

RESUMO

Ficolins are a group of oligomeric defense proteins assembled from collagen-like stalks and fibrinogen-like domains that have common biochemical specificity for N-acetyl-d-glucose amine (GlcNAc) and can function as opsonins. In this report, GlcNAc-binding protein (GBP) purified from porcine nonimmune serum was biochemically characterized as ficolin-α. Ficolin-α was used as an immunogen to generate both rabbit polyclonal and murine monoclonal anti-ficolin-α antibodies, which are not yet commercially available. GBPs have been shown to be present in many animals, including humans; however, their functions are largely unknown. GBPs from chicken, dog, horse, bovine, and human sera were isolated using various chromatography methods. Interestingly, anti-ficolin-α antibody showed cross-reaction with those animal sera GBPs. Furthermore, anti-ficolin-α antibody was reactive with the GlcNAc eluate of Escherichia coli O26-bound and Salmonella-bound porcine serum proteins. Functionally, GBPs and bacteria-reactive pig serum proteins were able to bind with pathogen-associated molecular patterns such as lipopolysaccharides and lipoteichoic acids. Our studies demonstrate that ficolin-α specific antibody was reactive with GBPs from many species as well as bacteria-reactive serum proteins. These proteins may play important roles in innate immunity by sensing danger components that can lead to antibacterial activity.


Assuntos
Acetilglucosamina/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos/imunologia , Lectinas/imunologia , Animais , Proteínas de Bactérias/metabolismo , Bovinos , Galinhas , Reações Cruzadas , Cães , Escherichia coli/metabolismo , Cavalos , Humanos , Lectinas/isolamento & purificação , Lipopolissacarídeos/metabolismo , Ligação Proteica , Coelhos , Salmonella typhimurium/metabolismo , Especificidade da Espécie , Suínos , Ácidos Teicoicos/metabolismo , Ficolinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA