RESUMO
Lignin, the second most abundant biopolymer, is a promising renewable energy source and chemical feedstock. A key element of lignin biosynthesis is unknown: how do lignin precursors (monolignols) get from inside the cell out to the cell wall where they are polymerized? Modeling indicates that monolignols can passively diffuse through lipid bilayers, but this has not been tested experimentally. We demonstrate significant monolignol diffusion occurs when laccases, which consume monolignols, are present on one side of the membrane. We hypothesize that lignin polymerization could deplete monomers in the wall, creating a concentration gradient driving monolignol diffusion. We developed a two-photon microscopy approach to visualize lignifying Arabidopsis thaliana root cells. Laccase mutants with reduced ability to form lignin polymer in the wall accumulated monolignols inside cells. In contrast, active transport inhibitors did not decrease lignin in the wall and scant intracellular phenolics were observed. Synthetic liposomes were engineered to encapsulate laccases, and monolignols crossed these pure lipid bilayers to form polymer within. A sink-driven diffusion mechanism explains why it has been difficult to identify genes encoding monolignol transporters and why the export of varied phenylpropanoids occurs without specificity. It also highlights an important role for cell wall oxidative enzymes in monolignol export.
Assuntos
Arabidopsis , Lignina , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/metabolismo , Lacase/genética , Lacase/metabolismo , Lignina/metabolismo , Bicamadas Lipídicas/metabolismo , PolimerizaçãoRESUMO
Building sustainable platforms to produce biofuels and specialty chemicals has become an increasingly important strategy to supplement and replace fossil fuels and petrochemical-derived products. Terpenoids are the most diverse class of natural products that have many commercial roles as specialty chemicals. Poplar is a fast growing, biomassdense bioenergy crop with many species known to produce large amounts of the hemiterpene isoprene, suggesting an inherent capacity to produce significant quantities of other terpenes. Here we aimed to engineer poplar with optimized pathways to produce squalene, a triterpene commonly used in cosmetic oils, a potential biofuel candidate, and the precursor to the further diversified classes of triterpenoids and sterols. The squalene production pathways were either re-targeted from the cytosol to plastids or co-produced with lipid droplets in the cytosol. Squalene and lipid droplet co-production appeared to be toxic, which we hypothesize to be due to disruption of adventitious root formation, suggesting a need for tissue specific production. Plastidial squalene production enabled up to 0.63 mg/g fresh weight in leaf tissue, which also resulted in reductions in isoprene emission and photosynthesis. These results were also studied through a technoeconomic analysis, providing further insight into developing poplar as a production host.
Assuntos
Populus , Esqualeno , Esqualeno/metabolismo , Populus/metabolismo , Populus/genética , Populus/crescimento & desenvolvimento , Engenharia Metabólica/métodos , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Triterpenos/metabolismo , Biocombustíveis , Plastídeos/metabolismoRESUMO
Lignin, a polyphenolic polymer, is a major chemical constituent of the cell walls of terrestrial plants. The biosynthesis of lignin is a highly plastic process, as highlighted by an increasing number of noncanonical monomers that have been successfully identified in an array of plants. Here, we engineered hybrid poplar (Populus alba x grandidentata) to express chalcone synthase 3 (MdCHS3) derived from apple (Malus domestica) in lignifying xylem. Transgenic trees displayed an accumulation of the flavonoid naringenin in xylem methanolic extracts not inherently observed in wild-type trees. Nuclear magnetic resonance analysis revealed the presence of naringenin in the extract-free, cellulase-treated xylem lignin of MdCHS3-poplar, indicating the incorporation of this flavonoid-derived compound into poplar secondary cell wall lignins. The transgenic trees also displayed lower total cell wall lignin content and increased cell wall carbohydrate content and performed significantly better in limited saccharification assays than their wild-type counterparts.
Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Flavanonas/metabolismo , Lignina/biossíntese , Lignina/genética , Populus/genética , Populus/metabolismo , Xilema/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Flavanonas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Malus/genética , Malus/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Xilema/genéticaRESUMO
Poplar (Populus) lignin is naturally acylated with p-hydroxybenzoate ester moieties. However, the enzyme(s) involved in the biosynthesis of the monolignol-p-hydroxybenzoates have remained largely unknown. Here, we performed an in vitro screen of the Populus trichocarpa BAHD acyltransferase superfamily (116 genes) using a wheatgerm cell-free translation system and found five enzymes capable of producing monolignol-p-hydroxybenzoates. We then compared the transcript abundance of the five corresponding genes with p-hydroxybenzoate concentrations using naturally occurring unrelated genotypes of P. trichocarpa and revealed a positive correlation between the expression of p-hydroxybenzoyl-CoA monolig-nol transferase (pHBMT1, Potri.001G448000) and p-hydroxybenzoate levels. To test whether pHBMT1 is responsible for the biosynthesis of monolignol-p-hydroxybenzoates, we overexpressed pHBMT1 in hybrid poplar (Populus alba × P. grandidentata) (35S::pHBMT1 and C4H::pHBMT1). Using three complementary analytical methods, we showed that there was an increase in soluble monolignol-p-hydroxybenzoates and cell-wall-bound monolignol-p-hydroxybenzoates in the poplar transgenics. As these pendent groups are ester-linked, saponification releases p-hydroxybenzoate, a precursor to parabens that are used in pharmaceuticals and cosmetics. This identified gene could therefore be used to engineer lignocellulosic biomass with increased value for emerging biorefinery strategies.
Assuntos
Acilação/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Lignina/biossíntese , Lignina/genética , Populus/genética , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente ModificadasRESUMO
During autumn, decreasing photoperiod and temperature temporarily perturb the balance between carbon uptake and carbon demand in overwintering plants, requiring coordinated adjustments in photosynthesis and carbon allocation to re-establish homeostasis. Here we examined adjustments of photosynthesis and allocation of nonstructural carbohydrates (NSCs) following a sudden shift to short photoperiod, low temperature, and/or elevated CO2 in Pinus strobus seedlings. Seedlings were initially acclimated to 14 h photoperiod (22/15°C day/night) and ambient CO2 (400 ppm) or elevated CO2 (800 ppm). Seedlings were then shifted to 8 h photoperiod for one of three treatments: no temperature change at ambient CO2 (22/15°C, 400 ppm), low temperature at ambient CO2 (12/5°C, 400 ppm), or no temperature change at elevated CO2 (22/15°C, 800 ppm). Short photoperiod caused all seedlings to exhibit partial nighttime depletion of starch. Short photoperiod alone did not affect photosynthesis. Short photoperiod combined with low temperature caused hexose accumulation and repression of photosynthesis within 24 h, followed by a transient increase in nonphotochemical quenching (NPQ). Under long photoperiod, plants grown under elevated CO2 exhibited significantly higher NSCs and photosynthesis compared to ambient CO2 plants, but carbon uptake exceeded sink capacity, leading to elevated NPQ; carbon sink capacity was restored and NPQ relaxed within 24 h after shift to short photoperiod. Our findings indicate that P. strobus rapidly adjusts NSC allocation, not photosynthesis, to accommodate short photoperiod. However, the combination of short photoperiod and low temperature, or long photoperiod and elevated CO2 disrupts the balance between photosynthesis and carbon sink capacity, resulting in increased NPQ to alleviate excess energy.
Assuntos
Dióxido de Carbono , Pinus , Temperatura , Dióxido de Carbono/fisiologia , Fotoperíodo , Fotossíntese/fisiologia , Plântula/fisiologia , Carbono , Carboidratos , Folhas de Planta/fisiologiaRESUMO
The radiation of angiosperms led to the emergence of the vast majority of today's plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature. However, the genetic factors that determine their dimensions are unclear. Here we show that a previously uncharacterized gene, ENLARGED VESSEL ELEMENT (EVE), contributes to the dimensions of vessel elements in Populus, impacting hydraulic conductivity. Our data suggest that EVE is localized in the plasma membrane and is involved in potassium uptake of differentiating xylem cells during vessel development. In plants, EVE first emerged in streptophyte algae, but expanded dramatically among vessel-containing angiosperms. The phylogeny, structure and composition of EVE indicates that it may have been involved in an ancient horizontal gene-transfer event.
Assuntos
Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Evolução Biológica , Membrana Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotossíntese , Phycodnaviridae , Plantas Geneticamente Modificadas , Potássio/metabolismo , Água/metabolismo , Xilema/citologia , Xilema/metabolismoRESUMO
Renewed interests in the development of bioenergy, biochemicals, and biomaterials have elicited new strategies for engineering the lignin of biomass feedstock plants. This study shows, for the first time, that 3,4-dihydroxybenzoate (DHB) is compatible with the radical coupling reactions that assemble polymeric lignin in plants. We introduced a bacterial 3-dehydroshikimate dehydratase into hybrid poplar (Populus alba × grandidentata) to divert carbon flux away from the shikimate pathway, which lies upstream of lignin biosynthesis. Transgenic poplar wood had up to 33% less lignin with p-hydroxyphenyl units comprising as much as 10% of the lignin. Mild alkaline hydrolysis of transgenic wood released fewer ester-linked p-hydroxybenzoate groups than control trees, and revealed the novel incorporation of cell-wall-bound DHB, as well as glycosides of 3,4-dihydroxybenzoic acid (DHBA). Two-dimensional nuclear magnetic resonance (2D-NMR) analysis uncovered DHBA-derived benzodioxane structures suggesting that DHB moieties were integrated into the lignin polymer backbone. In addition, up to 40% more glucose was released from transgenic wood following ionic liquid pretreatment and enzymatic hydrolysis. This work highlights the potential of diverting carbon flux from the shikimate pathway for lignin engineering and describes a new type of 'zip-lignin' derived from the incorporation of DHB into poplar lignin.
Assuntos
Lignina , Populus , Hidroxibenzoatos , Lignina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Madeira/químicaRESUMO
The valuable cannabinoid and terpenoid metabolites of Cannabis sativa L. are produced by floral glandular trichomes. The trichomes consist of secretory disk cells, which produce the abundant lipidic metabolites, and an extracellular storage cavity. The mechanisms of apoplastic cavity formation to accumulate and store metabolites in cannabis glandular trichomes remain wholly unexplored. Here, we identify key wall components and how they change during cannabis trichome development. While glycome and monosaccharide analyses revealed that glandular trichomes have loosely bound xyloglucans and pectic polysaccharides, quantitative immunolabeling with wall-directed antibodies revealed precise spatiotemporal distributions of cell wall epitopes. An epidermal-like identity of early trichome walls matured into specialized wall domains over development. Cavity biogenesis was marked by separation of the subcuticular wall from the underlying surface wall in a homogalacturonan and α-1,5 arabinan epitope-rich zone and was associated with a reduction in fucosylated xyloglucan epitopes. As the cavity filled, a matrix with arabinogalactan and α-1,5 arabinan epitopes enclosed the metabolite droplets. At maturity, the disk cells' apical wall facing the storage cavity accumulated rhamnogalacturonan-I epitopes near the plasma membrane. Together, these data indicate that cannabis glandular trichomes undergo spatiotemporal remodeling at specific wall subdomains to facilitate storage cavity formation and metabolite storage.
Assuntos
Cannabis/metabolismo , Parede Celular/metabolismo , Tricomas/metabolismoRESUMO
The secondary cell wall (SCW) of xylem vessel cells provides rigidity and strength that enables efficient water conduction throughout the plant. To gain insight into SCW deposition, we mutagenized Arabidopsis thaliana VASCULAR-RELATED NAC-DOMAIN7-inducible plant lines, in which ectopic protoxylem vessel cell differentiation is synchronously induced. The baculites mutant was isolated based on the absence of helical SCW patterns in ectopically-induced protoxylem vessel cells, and mature baculites plants exhibited an irregular xylem (irx) mutant phenotype in mature plants. A single nucleic acid substitution in the CELLULOSE SYNTHASE SUBUNIT 7 (CESA7) gene in baculites was identified: while the mutation was predicted to produce a C-terminal truncated protein, immunoblot analysis revealed that cesa7bac mutation results in loss of production of CESA7 proteins, indicating that baculites is a novel cesa7 loss-of-function mutant. In cesa7bac , despite a lack of patterned cellulose deposition, the helically-patterned deposition of other SCW components, such as the hemicellulose xylan and the phenolic polymer lignin, was not affected. Similar phenotypes were found in another point mutation mutant cesa7mur10-2 , and an established knock-out mutant, cesa7irx3-4 Taken together, we propose that the spatio-temporal deposition of different SCW components, such as xylan and lignin, is not dependent on cellulose patterning.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , MutaçãoRESUMO
Cell wall recalcitrance is a major constraint for the exploitation of lignocellulosic biomass as a renewable resource for energy and bio-based products. Transcriptional regulators of the lignin biosynthetic pathway represent promising targets for tailoring lignin content and composition in plant secondary cell walls. However, knowledge about the transcriptional regulation of lignin biosynthesis in lignocellulosic feedstocks, such as Miscanthus, is limited. In Miscanthus leaves, MsSCM1 and MsMYB103 are expressed at growth stages associated with lignification. The ectopic expression of MsSCM1 and MsMYB103 in N. benthamiana leaves was sufficient to trigger secondary cell wall deposition with distinct sugar and lignin compositions. Moreover, RNA-seq analysis revealed that the transcriptional responses to MsSCM1 and MsMYB103 overexpression showed an extensive overlap with the response to the NAC master transcription factor MsSND1, but were distinct from each other, underscoring the inherent complexity of secondary cell wall formation. Furthermore, conserved and previously described promoter elements as well as novel and specific motifs could be identified from the target genes of the three transcription factors. Together, MsSCM1 and MsMYB103 represent interesting targets for manipulations of lignin content and composition in Miscanthus towards a tailored biomass.
Assuntos
Lignina/biossíntese , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Biomassa , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , RNA-Seq/métodos , Fatores de Transcrição/genética , Transcriptoma/genéticaRESUMO
Epigenomes have remarkable potential for the estimation of plant traits. This study tested the hypothesis that natural variation in DNA methylation can be used to estimate industrially important traits in a genetically diverse population of Populus balsamifera L. (balsam poplar) trees grown at two common garden sites. Statistical learning experiments enabled by deep learning models revealed that plant traits in novel genotypes can be modelled transparently using small numbers of methylated DNA predictors. Using this approach, tissue type, a nonheritable attribute, from which DNA methylomes were derived was assigned, and provenance, a purely heritable trait and an element of population structure, was determined. Significant proportions of phenotypic variance in quantitative wood traits, including total biomass (57.5%), wood density (40.9%), soluble lignin (25.3%) and cell wall carbohydrate (mannose: 44.8%) contents, were also explained from natural variation in DNA methylation. Modelling plant traits using DNA methylation can capture tissue-specific epigenetic mechanisms underlying plant phenotypes in natural environments. DNA methylation-based models offer new insight into natural epigenetic influence on plants and can be used as a strategy to validate the identity, provenance or quality of agroforestry products.
Assuntos
Populus , Metilação de DNA/genética , Aprendizado Profundo , Epigenoma , Epigenômica , Fenótipo , Populus/genéticaRESUMO
BACKGROUND: Understanding lignin biosynthesis and composition is of central importance for sustainable bioenergy and biomaterials production. Species of the genus Miscanthus have emerged as promising bioenergy crop due to their rapid growth and modest nutrient requirements. However, lignin polymerization in Miscanthus is poorly understood. It was previously shown that plant laccases are phenol oxidases that have multiple functions in plant, one of which is the polymerization of monolignols. Herein, we link a newly discovered Miscanthus laccase, MsLAC1, to cell wall lignification. Characterization of recombinant MsLAC1 and Arabidopsis transgenic plants expressing MsLAC1 were carried out to understand the function of MsLAC1 both in vitro and in vivo. RESULTS: Using a comprehensive suite of molecular, biochemical and histochemical analyses, we show that MsLAC1 localizes to cell walls and identify Miscanthus transcription factors capable of regulating MsLAC1 expression. In addition, MsLAC1 complements the Arabidopsis lac4-2 lac17 mutant and recombinant MsLAC1 is able to oxidize monolignol in vitro. Transgenic Arabidopsis plants over-expressing MsLAC1 show higher G-lignin content, although recombinant MsLAC1 seemed to prefer sinapyl alcohol as substrate. CONCLUSIONS: In summary, our results suggest that MsLAC1 is regulated by secondary cell wall MYB transcription factors and is involved in lignification of xylem fibers. This report identifies MsLAC1 as a promising breeding target in Miscanthus for biofuel and biomaterial applications.
Assuntos
Lacase/genética , Lignina/química , Proteínas de Plantas/genética , Poaceae/fisiologia , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/fisiologia , Lacase/metabolismo , Lignina/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Poaceae/química , Poaceae/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMO
Galactinol synthase is a pivotal enzyme involved in the synthesis of the raffinose family of oligosaccharides (RFOs) that function as transport carbohydrates in the phloem, as storage compounds in sink tissues and as soluble metabolites that combat both abiotic and biotic stress in several plant species. Hybrid poplar (Populus alba × grandidentata) overexpressing the Arabidopsis thaliana GolS3 (AtGolS3) gene showed clear effects on development; the extreme overexpressing lines were stunted and had cell wall traits characteristic of tension wood, whereas lines with only moderate up-regulation grew normally and had moderately altered secondary cell wall composition and ultrastructure. Stem cross-sections of the developing xylem revealed a significant increase in the number of vessels, as well as the clear presence of a G-layer in the fibres. Furthermore, AtGolS3-OE lines possessed higher cellulose and lower lignin contents, an increase in cellulose crystallinity, and significantly altered hemicellulose-derived carbohydrates, notably manifested by their mannose and xylose contents. In addition, the transgenic plants displayed elevated xylem starch content. Transcriptome interrogation of the transgenic plants showed a significant up-regulation of genes involved in the synthesis of myo-inositol, along with genes involved in sucrose degradation. The results suggest that the overexpression of GolS and its product galactinol may serve as a molecular signal that initiates metabolic changes, culminating in a change in cell wall development and potentially the formation of tension wood.
Assuntos
Carbono/metabolismo , Parede Celular/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Celulose/metabolismo , Galactosiltransferases/metabolismo , Lignina/metabolismo , Oligossacarídeos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Populus/genética , Populus/crescimento & desenvolvimento , Xilema/metabolismoRESUMO
Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 µL L-1) or elevated (800 µmol mol-1) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature events changes, this is unlikely to increase risk of freezing damage in P. strobus seedlings.
Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Pinus/fisiologia , Temperatura , Adaptação Fisiológica , Metabolismo dos Carboidratos , Clorofila/metabolismo , Temperatura Baixa , Congelamento , Immunoblotting , Espectrometria de Massas , Fotoperíodo , Pinus/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Estações do Ano , Plântula/metabolismo , Plântula/fisiologia , Fatores de TempoRESUMO
BACKGROUND: QTL cloning for the discovery of genes underlying polygenic traits has historically been cumbersome in long-lived perennial plants like Populus. Linkage disequilibrium-based association mapping has been proposed as a cloning tool, and recent advances in high-throughput genotyping and whole-genome resequencing enable marker saturation to levels sufficient for association mapping with no a priori candidate gene selection. Here, multiyear and multienvironment evaluation of cell wall phenotypes was conducted in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree and two partially overlapping populations of unrelated P. trichocarpa genotypes using pyrolysis molecular beam mass spectrometry, saccharification, and/ or traditional wet chemistry. QTL mapping was conducted using a high-density genetic map with 3,568 SNP markers. As a fine-mapping approach, chromosome-wide association mapping targeting a QTL hot-spot on linkage group XIV was performed in the two P. trichocarpa populations. Both populations were genotyped using the 34 K Populus Infinium SNP array and whole-genome resequencing of one of the populations facilitated marker-saturation of candidate intervals for gene identification. RESULTS: Five QTLs ranging in size from 0.6 to 1.8 Mb were mapped on linkage group XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6-carbon sugars using the mapping pedigree. Six candidate loci exhibiting significant associations with phenotypes were identified within QTL intervals. These associations were reproducible across multiple environments, two independent genotyping platforms, and different plant growth stages. cDNA sequencing for allelic variants of three of the six loci identified polymorphisms leading to variable length poly glutamine (PolyQ) stretch in a transcription factor annotated as an ANGUSTIFOLIA C-terminus Binding Protein (CtBP) and premature stop codons in a KANADI transcription factor as well as a protein kinase. Results from protoplast transient expression assays suggested that each of the polymorphisms conferred allelic differences in the activation of cellulose, hemicelluloses, and lignin pathway marker genes. CONCLUSION: This study illustrates the utility of complementary QTL and association mapping as tools for gene discovery with no a priori candidate gene selection. This proof of concept in a perennial organism opens up opportunities for discovery of novel genetic determinants of economically important but complex traits in plants.
Assuntos
Parede Celular/genética , Genes de Plantas , Populus/genética , Alelos , Sequência de Bases , Celulose/metabolismo , Mapeamento Cromossômico , Ligação Genética , Genótipo , Lignina/biossíntese , Escore Lod , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genéticaRESUMO
In plants, genes may sustain extensive pleiotropic functional properties by individually affecting multiple, distinct traits. We discuss results from three genome-wide association studies of approximately 400 natural poplar (Populus trichocarpa) accessions phenotyped for 60 ecological/biomass, wood quality, and rust fungus resistance traits. Single-nucleotide polymorphisms (SNPs) in the poplar ortholog of the class III homeodomain-leucine zipper transcription factor gene REVOLUTA (PtREV) were significantly associated with three specific traits. Based on SNP associations with fungal resistance, leaf drop, and cellulose content, the PtREV gene contains three potential regulatory sites within noncoding regions at the gene's 3' end, where alternative splicing and messenger RNA processing actively occur. The polymorphisms in this region associated with leaf abscission and cellulose content are suggested to represent more recent variants, whereas the SNP associated with leaf rust resistance may be more ancient, consistent with REV's primary role in auxin signaling and its functional evolution in supporting fundamental processes of vascular plant development.
Assuntos
Pleiotropia Genética , Técnicas Genéticas , Proteínas de Plantas/genética , Populus/genética , Desequilíbrio de Ligação/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Bioinformatic analysis indicates that sucrose phosphate synthase (SPS) contains a putative C-terminal sucrose phosphate phosphatase (SPP)-like domain that may facilitates the binding of SPP. If an SPS-SPP enzyme complex exists, it may provide sucrose biosynthesis with an additional level of regulation, forming a direct metabolic channel for sucrose-6-phosphate between these two enzymes. Herein, the formation of an enzyme complex between SPS and SPP was examined, and the results from yeast two-hybrid experiments suggest that there is indeed an association between these proteins. In addition, in planta bioluminescence resonance energy transfer (BRET) was observed in Arabidopsis seedlings, providing physical evidence for a protein interaction in live cells and in real time. Finally, bimolecular fluorescence complementation (BiFC) was employed in an attempt to detect SPS-SPP interactions visually. The findings clearly demonstrated that SPS interacts with SPP and that this interaction impacts soluble carbohydrate pools and affects carbon partitioning to starch. Moreover, a fusion construct between the two genes promotes plant growth in both transgenic Arabidopsis and hybrid poplar.
Assuntos
Biomassa , Glucosiltransferases/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Plantas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ligação ProteicaRESUMO
Cell walls are vital to the normal growth and development of plants as they protect the protoplast and provide rigidity to the stem. Here, two poplar and Arabidopsis orthologous endoglucanases, which have been proposed to play a role in secondary cell wall development, were examined. The class B endoglucanases, PtGH9B5 and AtGH9B5, are secreted enzymes that have a predicted glycosylphosphatidylinositol anchor, while the class C endoglucanases, PtGH9C2 and AtGH9C2, are also predicted to be secreted but instead contain a carbohydrate-binding module. The poplar endoglucanases were expressed in Arabidopsis using both a 35S promoter and the Arabidopsis secondary cell wall-specific CesA8 promoter. Additionally, Arabidopsis t-DNA insertion lines and an RNAi construct was created to downregulate AtGH9C2 in Arabidopsis. All of the plant lines were examined for changes in cell morphology and patterning, growth and development, cell wall crystallinity, microfibril angle, and proportion of cell wall carbohydrates. Misregulation of PtGH9B5/AtGH9B5 resulted in changes in xylose content, while misregulation of PtGH9C2/AtGH9C2 resulted in changes in crystallinity, which was inversely correlated with changes in plant height and rosette diameter. Together, these results suggest that these endoglucanases affect secondary cell wall development by contributing to the cell wall crystallization process.
Assuntos
Parede Celular/metabolismo , Celulase/metabolismo , Celulose/metabolismo , Células Vegetais/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Cristalização , DNA Bacteriano/genética , Regulação para Baixo , Genes de Plantas , Mutagênese Insercional/genética , Filogenia , Populus/enzimologia , Populus/genética , Populus/crescimento & desenvolvimento , Interferência de RNA , Coloração e RotulagemRESUMO
BACKGROUND: The phenolic polymer lignin is one of the primary chemical constituents of the plant secondary cell wall. Due to the inherent plasticity of lignin biosynthesis, several phenolic monomers have been shown to be incorporated into the polymer, as long as the monomer can undergo radicalization so it can participate in coupling reactions. In this study, we significantly enhance the level of incorporation of monolignol ferulate conjugates into the lignin polymer to improve the digestibility of lignocellulosic biomass. RESULTS: Overexpression of a rice Feruloyl-CoA Monolignol Transferase (FMT), OsFMT1, in hybrid poplar (Populus alba x grandidentata) produced transgenic trees clearly displaying increased cell wall-bound ester-linked ferulate, p-hydroxybenzoate, and p-coumarate, all of which are in the lignin cell wall fraction, as shown by NMR and DFRC. We also demonstrate the use of a novel UV-Vis spectroscopic technique to rapidly screen plants for the presence of both ferulate and p-hydroxybenzoate esters. Lastly we show, via saccharification assays, that the OsFMT1 transgenic p oplars have significantly improved processing efficiency compared to wild-type and Angelica sinensis-FMT-expressing poplars. CONCLUSIONS: The findings demonstrate that OsFMT1 has a broad substrate specificity and a higher catalytic efficiency compared to the previously published FMT from Angelica sinensis (AsFMT). Importantly, enhanced wood processability makes OsFMT1 a promising gene to optimize the composition of lignocellulosic biomass.
RESUMO
The raffinose family of oligosaccharides (RFOs) serve as transport carbohydrates in the phloem, storage compounds in sink tissues, and putative biological agents to combat both abiotic and biotic stress in several plant species. To investigate further the functional roles of this class of compounds in trees, two cDNAs encoding galactinol synthase (GolS, EC 2.4.1.123), which catalyses the first step in the biosynthesis of RFOs, were identified and cloned from hybrid poplar (Populus alba×grandidentata). Phylogenetic analyses of the Populus GolS isoforms with other known GolS proteins suggested a putative role for these enzymes during biotic or abiotic stress in hybrid poplar. The predicted protein sequences of both isoforms (Pa×gGolSI and Pa×gGolSII) showed characteristics of GolS proteins from other species, including a serine phosphorylation site and the ASAAP pentapeptide hydrophobic domain. Kinetic analyses of recombinant Pa×gGolSI and Pa×gGolSII resulted in K(m) values for UPD-galactose of 0.80 and 0.65 mM and V(max) values of 657.5 and 1245 nM min(-1), respectively. Pa×gGolSI inherently possessed a broader pH and temperature range when compared with Pa×gGolSII. Interestingly, spatial and temporal expression analyses revealed that Pa×gGolSII transcript levels varied seasonally, while Pa×gGolSI did not, implying temperature-regulated transcriptional control of this gene in addition to the observed thermosensitivity of the respective enzyme. This evidence suggested that Pa×gGolSI may be involved in basic metabolic activities such as storage, while Pa×gGolSII is probably involved in seasonal mobilization of carbohydrates.