Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 300(2): 105638, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199570

RESUMO

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. Previous research has shown that in immortalized bone marrow-derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocyte cell lines expressing a synthetic protein blocking the HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context-dependent.


Assuntos
Inflamassomos , Leucócitos Mononucleares , Animais , Humanos , Camundongos , Linhagem Celular , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transporte Proteico/fisiologia
2.
Biochem Biophys Res Commun ; 545: 177-182, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33561652

RESUMO

The NLRP3 inflammasome is a critical component of the innate immune response to sterile inflammation. Its regulation involves a priming step, required for up-regulation of inflammasome protagonists and an activation step leading to NLRP3 inflammasome complex assembly, which triggers caspase-1 activity. The IκKß kinase regulates canonical NF-κB, a key pathway involved in transcriptional priming. We found that IκKß also regulates the activation and function of the NLRP3 inflammasome beyond the priming step. Two unrelated IκKß inhibitors, AFN700 and TPCA-1, when applied after priming, fully blocked IL-1ß secretion triggered by nigericin in THP-1 cells. Both inhibitors prevented neither inflammasome assembly, as monitored by measuring the formation of ASC specks, nor the generation of caspase-1 p20, a hallmark of caspase-1 activity, but they impaired the initial cleavage and activation of procaspase-1. These data thus indicate that IκKß activity is required for efficient activation of NLRP3, suggesting that IκKß may fulfill a dual role in coupling priming and activation of the NLRP3 inflammasome.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Amidas/farmacologia , Caspase 1/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Interleucina-1beta/biossíntese , NF-kappa B/metabolismo , Nigericina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Células THP-1 , Tiofenos/farmacologia
3.
Biochem Biophys Res Commun ; 506(1): 48-52, 2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336982

RESUMO

The MALT1 (Mucosa associated lymphoid tissue lymphoma translocation protein 1) paracaspase couples antigen receptors on lymphocytes to downstream signaling events. Activation of MALT1 is known to involve stimulus-dependent CBM complex formation, that is, the recruitment of BCL10-bound MALT1 to a CARD-Coiled Coil protein. Beyond this canonical, CBM-dependent mechanism of MALT1 activation, recent studies suggest that MALT1 protease activity may be triggered by alternative mechanisms. For instance, the E3-ligase TRAF6 can activate MALT1 proteolytic function and induce MALT1 auto-cleavage. However, the interplay between CBM and TRAF6 with regard to MALT1 activation has remained incompletely elucidated. Here, by generating CRISPR/Cas9-derived knock-out Jurkat T-cells, we show that TRAF6 was dispensable for CARD11/BCL10-dependent MALT1 activation upon T-cell stimulation. However, ectopically-expressed TRAF6 could induce MALT1 activity in Jurkat T-cells devoid of either CARD11 or BCL10. These data provide unequivocal evidence that TRAF6-mediated MALT1 activation does not require the upstream scaffold CARD11 or the interaction between MALT1 and BCL10. Thus, TRAF6 may be part of a previously unidentified non-canonical pathway that triggers MALT1 protease activity independently of canonical CBM signalosomes.


Assuntos
Proteína 10 de Linfoma CCL de Células B/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Guanilato Ciclase/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Fator 6 Associado a Receptor de TNF/genética , Proteína 10 de Linfoma CCL de Células B/deficiência , Proteínas Adaptadoras de Sinalização CARD/deficiência , Sistemas CRISPR-Cas , Ativação Enzimática/efeitos dos fármacos , Edição de Genes/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Guanilato Ciclase/deficiência , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
4.
Immunol Cell Biol ; 96(1): 81-99, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29359407

RESUMO

Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is essential for immune responses triggered by antigen receptors but the contribution of its paracaspase activity is not fully understood. Here, we studied how MALT1 proteolytic function regulates T-cell activation and fate after engagement of the T-cell receptor pathway. We show that MLT-827, a potent and selective MALT1 paracaspase inhibitor, does not prevent the initial phase of T-cell activation, in contrast to the pan-protein kinase C inhibitor AEB071. However, MLT-827 strongly impacted cell expansion after activation. We demonstrate this is the consequence of profound inhibition of IL-2 production as well as reduced expression of the IL-2 receptor alpha subunit (CD25), resulting from defective canonical NF-κB activation and accelerated mRNA turnover mechanisms. Accordingly, MLT-827 revealed a unique transcriptional fingerprint of MALT1 protease activity, providing evidence for broad control of T-cell signaling pathways. Altogether, this first report with a potent and selective inhibitor elucidates how MALT1 paracaspase activity integrates several T-cell activation pathways and indirectly controls gamma-chain receptor dependent survival, to impact on T-cell expansion.


Assuntos
Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , NF-kappa B/metabolismo , Linfócitos T/imunologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Imunomodulação , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária , Proteólise , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
5.
bioRxiv ; 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37645730

RESUMO

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. It was shown that in immortalized bone marrow derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocytes cell lines expressing a synthetic protein blocking HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context dependent.

6.
PLoS One ; 16(11): e0248668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34767572

RESUMO

BACKGROUND: The NLRP3 inflammasome is a critical component of sterile inflammation, which is involved in many diseases. However, there is currently no known proximal biomarker for measuring NLRP3 activation in pathological conditions. Protein kinase D (PKD) has emerged as an important NLRP3 kinase that catalyzes the release of a phosphorylated NLRP3 species that is competent for inflammasome complex assembly. METHODS: To explore the potential for PKD activation to serve as a selective biomarker of the NLRP3 pathway, we tested various stimulatory conditions in THP-1 and U937 cell lines, probing the inflammasome space beyond NLRP3. We analyzed the correlation between PKD activation (monitored by its auto-phosphorylation) and functional inflammasome readouts. RESULTS: PKD activation/auto-phosphorylation always preceded cleavage of caspase-1 and gasdermin D, and treatment with the PKD inhibitor CRT0066101 could block NLRP3 inflammasome assembly and interleukin-1ß production. Conversely, blocking NLRP3 either genetically or using the MCC950 inhibitor prevented PKD auto-phosphorylation, indicating a bidirectional functional crosstalk between NLRP3 and PKD. Further assessments of the pyrin and NLRC4 pathways, however, revealed that PKD auto-phosphorylation can be triggered by a broad range of stimuli unrelated to NLRP3 inflammasome assembly. CONCLUSION: Although PKD and NLRP3 become functionally interconnected during NLRP3 activation, the promiscuous reactivity of PKD challenges its potential use for tracing the NLRP3 inflammasome pathway.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Quinase C/metabolismo , Biomarcadores/metabolismo , Caspase 1/metabolismo , Linhagem Celular Tumoral , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fosforilação , Pirina/metabolismo , Células U937
7.
Oncogenesis ; 10(4): 32, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824280

RESUMO

CARD-CC complexes involving BCL10 and MALT1 are major cellular signaling hubs. They govern NF-κB activation through their scaffolding properties as well as MALT1 paracaspase function, which cleaves substrates involved in NF-κB regulation. In human lymphocytes, gain-of-function defects in this pathway lead to lymphoproliferative disorders. CARD10, the prototypical CARD-CC protein in non-hematopoietic cells, is overexpressed in several cancers and has been associated with poor prognosis. However, regulation of CARD10 remains poorly understood. Here, we identified CARD10 as the first MALT1 substrate in non-hematopoietic cells and showed that CARD10 cleavage by MALT1 at R587 dampens its capacity to activate NF-κB. Preventing CARD10 cleavage in the lung tumor A549 cell line increased basal levels of IL-6 and extracellular matrix components in vitro, and led to increased tumor growth in a mouse xenograft model, suggesting that CARD10 cleavage by MALT1 might be a built-in mechanism controlling tumorigenicity.

8.
Biochem Biophys Res Commun ; 400(4): 543-7, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20804738

RESUMO

The MALT1 paracaspase has arginine-directed proteolytic activity. A20 is a dual ubiquitin-editing enzyme involved in termination of NF-κB signaling. Upon T- or B-cell receptor engagement human (h) A20 is cleaved by MALT1 after arginine 439, yielding an N-terminal fragment (hA20p50) and a C-terminal one (hA20p37). The hA20p50 fragment has never been detected directly, thus limiting insight into the functional consequences of MALT1-mediated cleavage of A20. Here, various antibodies were tested, including newly generated hA20p50 and hA20p37 specific antibodies, leading to detection of the hA20p50 fragment produced after MALT1-mediated cleavage of ectopically expressed as well as endogenous A20 proteins. The properties of both A20 fragments, generated upon co-expression with a constitutively active MALT1 protein, were further studied by sub-cellular fractionation and fluorescence microscopy. In contrast to full-length A20 which is particulate and insoluble, we found hA20p50 to be soluble and readily released into the cytosol whereas hA20p37 was partially soluble, thus suggesting loss of compartmentalization as a possible mechanism for MALT1-mediated dampening of A20 function.


Assuntos
Caspases/metabolismo , Citosol/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Humanos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Transporte Proteico , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
9.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663686

RESUMO

Besides its function in lymphoid cells, which has been addressed by numerous studies, the paracaspase MALT1 also plays an important role in innate cells downstream of pattern recognition receptors. Best studied are the Dectin-1 and Dectin-2 members of the C-type lectin-like receptor family that induce a SYK- and CARD9-dependent signaling cascade leading to NF-κB activation, in a MALT1-dependent manner. By contrast, Toll-like receptors (TLR), such as TLR-4, propagate NF-κB activation but signal via an MYD88/IRAK-dependent cascade. Nonetheless, whether MALT1 might contribute to TLR-4 signaling has remained unclear. Recent evidence with MLT-827, a potent and selective inhibitor of MALT1 paracaspase activity, indicates that TNF- production downstream of TLR-4 in human myeloid cells is independent of MALT1, as opposed to TNF- production downstream of Dectin-1, which is MALT1 dependent. Here, we addressed the selective involvement of MALT1 in pattern recognition sensing further, using a variety of human and mouse cellular preparations, and stimulation of Dectin-1, MINCLE or TLR-4 pathways. We also provided additional insights by exploring cytokines beyond TNF-, and by comparing MLT-827 to a SYK inhibitor (Cpd11) and to an IKK inhibitor (AFN700). Collectively, the data provided further evidence for the MALT1-dependency of C-type lectin-like receptor -signaling by contrast to TLR-signaling.


Assuntos
Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Animais , Humanos , Camundongos , Transdução de Sinais
10.
PLoS One ; 12(1): e0169026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28052131

RESUMO

The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A.


Assuntos
Caspases/metabolismo , Proteínas de Neoplasias/metabolismo , Isoformas de Proteínas/metabolismo , Linfócitos T/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 10 de Linfoma CCL de Células B , Western Blotting , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspases/genética , Linhagem Celular , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Células HEK293 , Humanos , Immunoblotting , Células Jurkat , Linfócitos/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Mutagênese , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação/genética , Ubiquitinação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA