Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neurochir (Wien) ; 165(12): 3993-4002, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907766

RESUMO

PURPOSE: Polyethylene glycol is known to improve recovery following its use in repair of acute peripheral nerve injury. The duration till which PEG works remains a subject of intense research. We studied the effect of PEG with augmentation of 20Htz of electrical stimulation (ES) following neurorrhaphy at 48 h in a rodent sciatic nerve neurotmesis model. METHOD: Twenty-four Sprague Dawley rats were divided into 4 groups. In group I, the sciatic nerve was transected and repaired immediately. In group II, PEG fusion was done additionally after acute repair. In group III, repair and PEG fusion were done at 48 h. In group IV, ES of 20Htz at 2 mA for 1 h was added to the steps followed for group III. Weekly assessment of sciatic functional index (SFI), pinprick, and cold allodynia tests were done at 3 weeks and euthanized. Sciatic nerve axonal count and muscle weight were done. RESULTS: Groups II, III, and IV showed significantly better recovery of SFI (II: 70.10 ± 1.24/III: 84.00 ± 2.59/IV: 74.40 ± 1.71 vs I: 90.00 ± 1.38) (p < 0.001) and axonal counts (II: 4040 ± 270/III: 2121 ± 450/IV:2380 ± 158 vs I: 1024 ± 094) (p < 0.001) at 3 weeks. The experimental groups showed earlier recovery of sensation in comparison to the controls as demonstrated by pinprick and cold allodynia tests and improved muscle weights. Addition of electrical stimulation helped in better score with SFI (III: 84.00 ± 2.59 vs IV: 74.40 ± 1.71) (p < 0.001) and muscle weight (plantar flexors) (III: 0.49 ± 0.02 vs IV: 0.55 ± 0.01) (p < 0.001) in delayed repair and PEG fusions. CONCLUSION: This study shows that PEG fusion of peripheral nerve repair in augmentation with ES results in better outcomes, and this benefit can be demonstrated up to a window period of 48 h after injury.


Assuntos
Traumatismos dos Nervos Periféricos , Traumatismos do Sistema Nervoso , Ratos , Animais , Ratos Sprague-Dawley , Polietilenoglicóis/uso terapêutico , Hiperalgesia , Modelos Animais de Doenças , Nervo Isquiático/cirurgia , Estimulação Elétrica , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica
2.
Proc Natl Acad Sci U S A ; 116(1): 287-296, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559206

RESUMO

Medial ganglionic eminence (MGE)-like interneuron precursors derived from human induced pluripotent stem cells (hiPSCs) are ideal for developing patient-specific cell therapy in temporal lobe epilepsy (TLE). However, their efficacy for alleviating spontaneous recurrent seizures (SRS) or cognitive, memory, and mood impairments has never been tested in models of TLE. Through comprehensive video- electroencephalographic recordings and a battery of behavioral tests in a rat model, we demonstrate that grafting of hiPSC-derived MGE-like interneuron precursors into the hippocampus after status epilepticus (SE) greatly restrained SRS and alleviated cognitive, memory, and mood dysfunction in the chronic phase of TLE. Graft-derived cells survived well, extensively migrated into different subfields of the hippocampus, and differentiated into distinct subclasses of inhibitory interneurons expressing various calcium-binding proteins and neuropeptides. Moreover, grafting of hiPSC-MGE cells after SE mediated several neuroprotective and antiepileptogenic effects in the host hippocampus, as evidenced by reductions in host interneuron loss, abnormal neurogenesis, and aberrant mossy fiber sprouting in the dentate gyrus (DG). Furthermore, axons from graft-derived interneurons made synapses on the dendrites of host excitatory neurons in the DG and the CA1 subfield of the hippocampus, implying an excellent graft-host synaptic integration. Remarkably, seizure-suppressing effects of grafts were significantly reduced when the activity of graft-derived interneurons was silenced by a designer drug while using donor hiPSC-MGE cells expressing designer receptors exclusively activated by designer drugs (DREADDs). These results implied the direct involvement of graft-derived interneurons in seizure control likely through enhanced inhibitory synaptic transmission. Collectively, the results support a patient-specific MGE cell grafting approach for treating TLE.


Assuntos
Encéfalo/embriologia , Epilepsia/cirurgia , Hipocampo/cirurgia , Células-Tronco Pluripotentes Induzidas/transplante , Estado Epiléptico/cirurgia , Afeto , Animais , Região CA1 Hipocampal/fisiologia , Cognição , Giro Denteado/fisiologia , Epilepsia do Lobo Temporal/cirurgia , Humanos , Masculino , Ratos , Ratos Endogâmicos F344 , Convulsões/cirurgia , Sinapses/fisiologia
3.
Epilepsy Behav ; 121(Pt B): 106499, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31636006

RESUMO

Extracellular vesicles (EVs) released from cells play vital roles in intercellular communication. Moreover, EVs released from stem cells have therapeutic properties. This review confers the potential of brain-derived EVs in the cerebrospinal fluid (CSF) and the serum as sources of epilepsy-related biomarkers, and the promise of mesenchymal stem cell (MSC)-derived EVs for easing status epilepticus (SE)-induced adverse changes in the brain. Extracellular vesicles shed from neurons and glia in the brain can also be found in the circulating blood as EVs cross the blood-brain barrier (BBB). Evaluation of neuron and/or glia-derived EVs in the blood of patients who have epilepsy could help in identifying specific biomarkers for distinct types of epilepsies. Such a liquid biopsy approach is also amenable for repeated analysis in clinical trials for comprehending treatment efficacy, disease progression, and mechanisms of therapeutic interventions. Extracellular vesicle biomarker studies in animal prototypes of epilepsy, in addition, could help in identifying specific micro ribonucleic acid (miRNAs) contributing to epileptogenesis, seizures, or cognitive dysfunction in different types of epilepsy. Furthermore, intranasal (IN) administration of MSC-derived EVs after SE has shown efficacy for restraining SE-induced neuroinflammation, aberrant neurogenesis, and cognitive dysfunction in an animal prototype. Clinical translation of EV therapy as an adjunct to antiepileptic drugs appears attractive to counteract the progression of SE-induced epileptogenic changes, as the risk for thrombosis or tumor is minimal with nanosized EVs. Also, EVs can be engineered to deliver specific miRNAs, proteins, or antiepileptic drugs to the brain since they incorporate into neurons and glia throughout the brain after IN administration. This article is part of the Special Issue "NEWroscience 2018".


Assuntos
Epilepsia , Vesículas Extracelulares , Estado Epiléptico , Animais , Encéfalo , Modelos Animais de Doenças , Epilepsia/diagnóstico , Epilepsia/terapia , Humanos
4.
Proc Natl Acad Sci U S A ; 114(17): E3536-E3545, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28396435

RESUMO

Status epilepticus (SE), a medical emergency that is typically terminated through antiepileptic drug treatment, leads to hippocampus dysfunction typified by neurodegeneration, inflammation, altered neurogenesis, as well as cognitive and memory deficits. Here, we examined the effects of intranasal (IN) administration of extracellular vesicles (EVs) secreted from human bone marrow-derived mesenchymal stem cells (MSCs) on SE-induced adverse changes. The EVs used in this study are referred to as A1-exosomes because of their robust antiinflammatory properties. We subjected young mice to pilocarpine-induced SE for 2 h and then administered A1-exosomes or vehicle IN twice over 24 h. The A1-exosomes reached the hippocampus within 6 h of administration, and animals receiving them exhibited diminished loss of glutamatergic and GABAergic neurons and greatly reduced inflammation in the hippocampus. Moreover, the neuroprotective and antiinflammatory effects of A1-exosomes were coupled with long-term preservation of normal hippocampal neurogenesis and cognitive and memory function, in contrast to waned and abnormal neurogenesis, persistent inflammation, and functional deficits in animals receiving vehicle. These results provide evidence that IN administration of A1-exosomes is efficient for minimizing the adverse effects of SE in the hippocampus and preventing SE-induced cognitive and memory impairments.


Assuntos
Exossomos/transplante , Transtornos da Memória/terapia , Células-Tronco Mesenquimais/metabolismo , Neurogênese , Estado Epiléptico/terapia , Administração Intranasal , Animais , Linhagem Celular , Exossomos/metabolismo , Exossomos/patologia , Humanos , Masculino , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Células-Tronco Mesenquimais/patologia , Camundongos , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia
5.
Development ; 140(7): 1573-82, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23482492

RESUMO

The mitogen-activated protein kinases (MAPKs; also known as ERKs) are key intracellular signaling molecules that are ubiquitously expressed in tissues and were assumed to be functionally equivalent. Here, we use the mouse lens as a model system to investigate whether MAPK1 plays a specific role during development. MAPK3 is known to be dispensable for lens development. We demonstrate that, although MAPK1 is uniformly expressed in the lens epithelium, its deletion significantly reduces cell proliferation in the peripheral region, an area referred to as the lens germinative zone in which most active cell division occurs during normal lens development. By contrast, cell proliferation in the central region is minimally affected by MAPK1 deletion. Cell cycle regulators, including cyclin D1 and survivin, are downregulated in the germinative zone of the MAPK1-deficient lens. Interestingly, loss of MAPK1 subsequently induces upregulation of phosphorylated MAPK3 (pMAPK3) levels in the lens epithelium; however, this increase in pMAPK3 is not sufficient to restore cell proliferation in the germinative zone. Additionally, MAPK1 plays an essential role in epithelial cell survival but is dispensable for fiber cell differentiation during lens development. Our data indicate that MAPK1/3 control cell proliferation in the lens epithelium in a spatially defined manner; MAPK1 plays a unique role in establishing the highly mitotic zone in the peripheral region, whereas the two MAPKs share a redundant role in controlling cell proliferation in the central region of the lens epithelium.


Assuntos
Padronização Corporal/genética , Proliferação de Células , Cristalino/embriologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Animais , Animais Recém-Nascidos , Padronização Corporal/fisiologia , Sobrevivência Celular/genética , Embrião de Mamíferos , Epitélio/embriologia , Epitélio/metabolismo , Feminino , Deleção de Genes , Doenças do Cristalino/embriologia , Doenças do Cristalino/genética , Cristalino/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Gravidez
6.
Stem Cell Res Ther ; 15(1): 108, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637847

RESUMO

BACKGROUND: Epilepsy affects ∼60 million people worldwide. Most antiseizure medications in the market act on voltage-gated sodium or calcium channels, indirectly modulating neurotransmitter GABA or glutamate levels or multiple targets. Earlier studies made significant efforts to directly deliver GABA into the brain with varied success. Herein, we have hypothesized to directly deliver exogenous GABA to the brain with epilepsy through extracellular vesicles (EVs) from human GABA-producing cells and their progenitors as EVs largely mimic their parent cell composition. METHODS: Human neural stem cells (NSCs), medial ganglionic eminence (MGE) cells, and GABAergic interneurons (INs) were generated from induced pluripotent stem cells (iPSCs) and characterized. EVs were isolated from NSCs, MGE cells, and INs and characterized for size and distribution, morphological features, and molecular markers. Exogenous GABA was passively loaded to the isolated EVs as a zwitterion at physiological pH, and the encapsulated dose of GABA was quantified. Epilepsy was developed through status epilepticus induction in Fisher rats by administration of repeated low doses of kainic acid. The extent of the seizures was measured for 10 h/ day for 3-6 months by video recording and its evaluation for stage III, IV and V seizures as per Racine scale. EVs from INs, MGE cells, and NSCs encapsulated with exogenous GABA were sequentially tested in the 4th, 5th, and 6th months by intranasal administration in the rats with epilepsy for detailed seizure, behavioral and synapse analysis. In separate experiments, several controls including exogenic GABA alone and EVs from INs and MGE cells were evaluated for seizure-controlling ability. RESULTS: Exogenic GABA could enter the brain through EVs. Treatment with EVs from INs and MGE cells encapsulated with GABA significantly reduced total seizures, stage V seizures, and total time spent in seizure activity. EVs from NSCs encapsulated with GABA demonstrated limited seizure control. Exogenic GABA alone and EVs from INs and MGE cells individually failed to control seizures. Further, exogenic GABA with EVs from MGE cells improved depressive behavior while partially improving memory functions. Co-localization studies confirmed exogenous GABA with presynaptic vesicles in the hippocampus, indicating the interaction of exogenous GABA in the brain with epilepsy. CONCLUSION: For the first time, the study demonstrated that exogenous GABA could be delivered to the brain through brain cell-derived EVs, which could regulate seizures in temporal lobe epilepsy. It is identified that the cellular origin of EVs plays a vital role in seizure control with exogenous GABA.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Vesículas Extracelulares , Humanos , Ratos , Animais , Convulsões/tratamento farmacológico , Epilepsia/terapia , Epilepsia do Lobo Temporal/tratamento farmacológico , Ácido gama-Aminobutírico/farmacologia
7.
Front Endocrinol (Lausanne) ; 15: 1416668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948520

RESUMO

Diabetic retinopathy (DR) stands as a prevalent complication in the eye resulting from diabetes mellitus, predominantly associated with high blood sugar levels and hypertension as individuals age. DR is a severe microvascular complication of both type I and type II diabetes mellitus and the leading cause of vision impairment. The critical approach to combatting and halting the advancement of DR lies in effectively managing blood glucose and blood pressure levels in diabetic patients; however, this is seldom achieved. Both human and animal studies have revealed the intricate nature of this condition involving various cell types and molecules. Aside from photocoagulation, the sole therapy targeting VEGF molecules in the retina to prevent abnormal blood vessel growth is intravitreal anti-VEGF therapy. However, a substantial portion of cases, approximately 30-40%, do not respond to this treatment. This review explores distinctive pathophysiological phenomena of DR and identifiable cell types and molecules that could be targeted to mitigate the chronic changes occurring in the retina due to diabetes mellitus. Addressing the significant research gap in this domain is imperative to broaden the treatment options available for managing DR effectively.


Assuntos
Retinopatia Diabética , Terapia de Alvo Molecular , Humanos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Animais , Terapia de Alvo Molecular/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
J Assist Reprod Genet ; 30(12): 1611-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24141830

RESUMO

PURPOSE: To investigate the influence of sperm DNA integrity on the zona binding ability of mouse spermatozoa in relation to their sex chromosomal constitution. METHOD(S): In this prospective experimental study, the sperm DNA fragmentation was induced by exposing testicular area of Swiss Albino mice (Mus musculus) to different doses of γ-radiation (0, 2.5, 5.0 and 10.0 Gy). Sperm DNA fragmentation was quantified by single cell gel electrophoresis (comet assay). In vitro sperm zona binding assay was performed and the numbers of zona bound X and Y bearing spermatozoa were determined using fluorescence in situ hybridization (FISH). RESULT(S): The assessment of zona pellucida bound X and Y-bearing spermatozoa using fluorescence in situ hybridization has revealed a unique binding pattern. The number of zona bound Y-spermatozoa declined significantly (P < 0.01 to 0.0001) with increase in the DNA damage. The skewed binding pattern of X and Y-bearing sperm was strongly correlated with the extent of sperm DNA damage. CONCLUSION(S): The zona pellucida may have a role in preventing DNA damaged mouse sperm binding especially towards Y-bearing sperm. However, the exact mechanism behind this observation needs to be elucidated further.


Assuntos
Fragmentação do DNA , Interações Espermatozoide-Óvulo/genética , Espermatozoides/fisiologia , Cromossomo Y/genética , Animais , Núcleo Celular , Dano ao DNA/genética , Hibridização in Situ Fluorescente , Masculino , Camundongos , Interações Espermatozoide-Óvulo/fisiologia , Cromossomo X/genética , Zona Pelúcida/fisiologia
9.
Mol Neurobiol ; 60(10): 5557-5577, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37326903

RESUMO

Neurodegenerative disorders (NDD) have grabbed significant scientific consideration due to their fast increase in prevalence worldwide. The specific pathophysiology of the disease and the amazing changes in the brain that take place as it advances are still the top issues of contemporary research. Transcription factors play a decisive role in integrating various signal transduction pathways to ensure homeostasis. Disruptions in the regulation of transcription can result in various pathologies, including NDD. Numerous microRNAs and epigenetic transcription factors have emerged as candidates for determining the precise etiology of NDD. Consequently, understanding by what means transcription factors are regulated and how the deregulation of transcription factors contributes to neurological dysfunction is important to the therapeutic targeting of pathways that they modulate. RE1-silencing transcription factor (REST) also named neuron-restrictive silencer factor (NRSF) has been studied in the pathophysiology of NDD. REST was realized to be a part of a neuroprotective element with the ability to be tuned and influenced by numerous microRNAs, such as microRNAs 124, 132, and 9 implicated in NDD. This article looks at the role of REST and the influence of various microRNAs in controlling REST function in the progression of Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) disease. Furthermore, to therapeutically exploit the possibility of targeting various microRNAs, we bring forth an overview of drug-delivery systems to modulate the microRNAs regulating REST in NDD.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Humanos , Fatores de Transcrição/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , MicroRNAs/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Epigênese Genética
10.
Front Neurol ; 14: 1250832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046591

RESUMO

Parkinson's disease (PD) presents with severe motor manifestations and a plethora of non-motor symptoms. Urinary dysfunctions are one of the most common non-motor symptoms of PD patients responsible for reduced quality of life. Urinary extracellular vesicles (EVs) are mostly considered to originate from the cells in the urogenital tract. In this study, we have performed urinary EV analysis in 29 PD cases with varied severity of urinary dysfunction and correlated it with the EV dynamics in 29 age-matched controls. In the studied cases, apart from urinary dysfunction, symptoms of depression, anxiety, cognitive dysfunction, sleep, and wakefulness were observed in >75% of the cases. No significant difference in urinary EV size, concentration and urinary EV protein concentration was observed between PD cases with urinary dysfunction and controls. However, a significant positive association was observed between urinary EV concentration and motor scores (p = 0.042), while no association was observed between urinary EV concentration and urinary dysfunction scores. Chronic stress induced by motor symptoms could be one of the reasons for excessive EV production in PD patients with urinary dysfunctions. Large-scale studies on the association of urinary EV dynamics with motor and non-motor symptoms may provide additional information on urinary dysfunction in PD.

11.
Pharmaceutics ; 15(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004573

RESUMO

The therapeutic effectiveness of the most widely used anticancer drug 5-fluorouracil (5-FU) is constrained by its high metabolism, short half-life, and rapid drug resistance after chemotherapy. Although various nanodrug delivery systems have been reported for skin cancer therapy, their retention, penetration and targeting are still a matter of concern. Hence, in the current study, a topical gel formulation that contains a metal-organic framework (zeolitic imidazole framework; ZIF-8) loaded with 5-FU and a surface modified with sonidegib (SDG; acting as a therapeutic agent as well as a targeting ligand) (5-FU@ZIF-8 MOFs) is developed against DMBA-UV-induced BCC skin cancer in rats. The MOFs were prepared using one-pot synthesis followed by post drug loading and SDG conjugation. The optimized MOFs were incorporated into hyaluronic acid-hydroxypropyl methyl cellulose gel and further subjected to characterization. Enhanced skin deposition of the 5-FU@ZIF-8-SDG MOFs was observed using ex vivo skin permeation studies. Confocal laser microscopy studies showed that 5-FU@ZIF-8-SDG MOFs permeated the skin via the transfollicular pathway. The 5-FU@ZIF-8-SDG MOFs showed stronger cell growth inhibition in A431 cells and good biocompatibility with HaCaT cells. Histopathological studies showed that the efficacy of the optimized MOF gels improved as the epithelial cells manifested modest hyperplasia, nuclear pleomorphism, and dyskeratosis. Additionally, immunohistochemistry and protein expression studies demonstrated the improved effectiveness of the 5-FU@ZIF-8-SDG MOFs, which displayed a considerable reduction in the expression of Bcl-2 protein. Overall, the developed MOF gels showed good potential for the targeted delivery of multifunctional MOFs in topical formulations for treating BCC cancer.

12.
Theranostics ; 13(7): 2241-2255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153730

RESUMO

Diabetic retinopathy (DR) is associated with retinal neovascularization, hard exudates, inflammation, oxidative stress and cell death, leading to vision loss. Anti-vascular endothelial growth factor (Anti-VEGF) therapy through repeated intravitreal injections is an established treatment for reducing VEGF levels in the retina for inhibiting neovascularization and leakage of hard exudates to prevent vision loss. Although anti-VEGF therapy has several clinical benefits, its monthly injection potentially causes devastating ocular complications, including trauma, intraocular hemorrhage, retinal detachment, endophthalmitis, etc. Methods: As mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) demonstrated safety in clinical studies, we have tested the efficacy of MSC-derived small EVs (MSC-sEVs) loaded anti-VEGF drug bevacizumab in a rat model of DR. Results: The study identified a clinically significant finding that sEV loaded with bevacizumab reduces the frequency of intravitreal injection required for treating diabetic retinopathy. The sustained effect is observed from the reduced levels of VEGF, exudates and leukostasis for more than two months following intravitreal injection of sEV loaded with bevacizumab, while bevacizumab alone could maintain reduced levels for about one month. Furthermore, retinal cell death was consistently lower in this period than only bevacizumab. Conclusion: This study provided significant evidence for the prolonged benefits of sEVs as a drug delivery system. Also, EV-mediated drug delivery systems could be considered for clinical application of retinal diseases as they maintain vitreous clarity in the light path due to their composition being similar to cells.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Vesículas Extracelulares , Animais , Ratos , Bevacizumab/uso terapêutico , Injeções Intravítreas , Retinopatia Diabética/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese , Anticorpos Monoclonais Humanizados , Diabetes Mellitus/tratamento farmacológico
13.
J Assist Reprod Genet ; 29(6): 557-63, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22411295

RESUMO

PURPOSE: DNA damage may occur during sperm processing, thereby negatively influencing fertilizing ability of the sperm. The present study was designed to compare the effectiveness of gradient and swim-up, either alone or in combination, to eliminate sperm with DNA damage. METHODS: A total of 51 subjects visiting the University infertility clinic with normozoospermic parameters, oligozoospermia and teratozoospermia were included. Semen characteristics were analysed by standard criteria; Terminal deoxy nucelotidyl transferase mediated dUTP nick end labeling assay was employed for DNA damage assessment. RESULTS: The percentage of TUNEL positive sperm after sperm processing was significantly lower in normozoospermic (P < 0.05), oligozoospermic (P < 0.001) and teratozoospermic samples (P < 0.01). No difference was observed in the incidence of TUNEL positive sperm between the various techniques, suggesting that they are comparable. CONCLUSIONS: Sperm preparation has been found to result in enrichment of sperm with intact chromatin, which is likely to improve the chances of achieving a viable pregnancy.


Assuntos
Centrifugação com Gradiente de Concentração/métodos , Dano ao DNA , Sêmen/citologia , Espermatozoides/fisiologia , Humanos , Marcação In Situ das Extremidades Cortadas , Infertilidade Masculina/patologia , Masculino , Oligospermia/genética , Valores de Referência , Contagem de Espermatozoides , Motilidade dos Espermatozoides/genética , Espermatozoides/citologia
14.
Stem Cells Dev ; 31(9-10): 221-238, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35316126

RESUMO

Lysosomal storage diseases (LSDs) are inherited metabolic diseases caused by deficiency of lysosomal enzymes, essential for the normal development of the brain and other organs. Approximately two-thirds of the patients suffering from LSD exhibit neurological deficits and impose an escalating challenge to the medical and scientific field. The advent of induced pluripotent stem cell (iPSC) technology has aided researchers in efficiently generating functional neuronal and non-neuronal cells through directed differentiation protocols, as well as in decoding the cellular, subcellular, and molecular defects associated with LSDs using two-dimensional cultures and cerebral organoid models. This review highlights the information assembled from patient-derived iPSCs on neurodevelopmental and neuropathological defects identified in LSDs. Multiple studies have identified neural progenitor cell migration and differentiation defects, substrate accumulation, axon growth and myelination defects, impaired calcium homeostasis, and altered electrophysiological properties, using patient-derived iPSCs. In addition, these studies have also uncovered defective lysosomes, mitochondria, endoplasmic reticulum, Golgi complex, autophagy and vesicle trafficking and signaling pathways, oxidative stress, neuroinflammation, blood-brain barrier dysfunction, neurodegeneration, gliosis, and altered transcriptomes in LSDs. The review also discusses the therapeutic applications such as drug discovery, repurposing of drugs, synergistic effects of drugs, targeted molecular therapies, gene therapy, and transplantation applications of mutation-corrected lines identified using patient-derived iPSCs for different LSDs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças por Armazenamento dos Lisossomos , Autofagia , Diferenciação Celular/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/terapia , Lisossomos/metabolismo , Lisossomos/patologia
15.
Front Immunol ; 13: 853000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572589

RESUMO

Persistent cognitive impairment is a primary central nervous system-related symptom in veterans afflicted with chronic Gulf War Illness (GWI). Previous studies in a rat model have revealed that cognitive dysfunction in chronic GWI is associated with neuroinflammation, typified by astrocyte hypertrophy, activated microglia, and enhanced proinflammatory cytokine levels. Studies in a mouse model of GWI have also shown upregulation of several phospholipids that serve as reservoirs of arachidonic acid, a precursor of leukotrienes (LTs). However, it is unknown whether altered LT signaling is a component of chronic neuroinflammatory conditions in GWI. Therefore, this study investigated changes in LT signaling in the brain of rats displaying significant cognitive impairments six months after exposure to GWI-related chemicals and moderate stress. The concentration of cysteinyl LTs (CysLTs), LTB4, and 5-Lipoxygenase (5-LOX), the synthesizing enzyme of LTs, were evaluated. CysLT and LTB4 concentrations were elevated in the hippocampus and the cerebral cortex, along with enhanced 5-LOX expression in neurons and microglia. Such changes were also associated with increased proinflammatory cytokine levels in the hippocampus and the cerebral cortex. Enhanced CysLT and LTB4 levels in the brain could also be gleaned from their concentrations in brain-derived extracellular vesicles in the circulating blood. The circulating blood in GWI rats displayed elevated proinflammatory cytokines with no alterations in CysLT and LTB4 concentrations. The results provide new evidence that a brain-specific increase in LT signaling is another adverse alteration that potentially contributes to the maintenance of chronic neuroinflammation in GWI. Therefore, drugs capable of modulating LT signaling may reduce neuroinflammation and improve cognitive function in GWI. Additional findings demonstrate that altered LT levels in the brain could be tracked efficiently by analyzing brain-derived EVs in the circulating blood.


Assuntos
Disfunção Cognitiva , Síndrome do Golfo Pérsico , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Leucotrieno B4/metabolismo , Leucotrienos/metabolismo , Camundongos , Doenças Neuroinflamatórias , Síndrome do Golfo Pérsico/metabolismo , Síndrome do Golfo Pérsico/psicologia , Ratos
16.
NPJ Regen Med ; 7(1): 38, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915118

RESUMO

Interneuron loss/dysfunction contributes to spontaneous recurrent seizures (SRS) in chronic temporal lobe epilepsy (TLE), and interneuron grafting into the epileptic hippocampus reduces SRS and improves cognitive function. This study investigated whether graft-derived gamma-aminobutyric acid positive (GABA-ergic) interneurons directly regulate SRS and cognitive function in a rat model of chronic TLE. Human pluripotent stem cell-derived medial ganglionic eminence-like GABA-ergic progenitors, engineered to express hM4D(Gi), a designer receptor exclusively activated by designer drugs (DREADDs) through CRISPR/Cas9 technology, were grafted into hippocampi of chronically epileptic rats to facilitate the subsequent silencing of graft-derived interneurons. Such grafting substantially reduced SRS and improved hippocampus-dependent cognitive function. Remarkably, silencing of graft-derived interneurons with a designer drug increased SRS and induced location memory impairment but did not affect pattern separation function. Deactivation of DREADDs restored both SRS control and object location memory function. Thus, transplanted GABA-ergic interneurons could directly regulate SRS and specific cognitive functions in TLE.

17.
Cells ; 11(24)2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36552875

RESUMO

Astrocytes are important for maintaining cholesterol metabolism, glutamate uptake, and neurotransmission. Indeed, inflammatory processes and neurodegeneration contribute to the altered morphology, gene expression, and function of astrocytes. Astrocytes, in collaboration with numerous microRNAs, regulate brain cholesterol levels as well as glutamatergic and inflammatory signaling, all of which contribute to general brain homeostasis. Neural electrical activity, synaptic plasticity processes, learning, and memory are dependent on the astrocyte-neuron crosstalk. Here, we review the involvement of astrocytic microRNAs that potentially regulate cholesterol metabolism, glutamate uptake, and inflammation in Alzheimer's disease (AD). The interaction between astrocytic microRNAs and long non-coding RNA and transcription factors specific to astrocytes also contributes to the pathogenesis of AD. Thus, astrocytic microRNAs arise as a promising target, as AD conditions are a worldwide public health problem. This review examines novel therapeutic strategies to target astrocyte dysfunction in AD, such as lipid nanodiscs, engineered G protein-coupled receptors, extracellular vesicles, and nanoparticles.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Fatores de Transcrição/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ácido Glutâmico/metabolismo , Colesterol/metabolismo
18.
Neurosci Biobehav Rev ; 121: 201-219, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33370574

RESUMO

The pathological alterations that manifest during the early embryonic development due to inherited and acquired factors trigger various neurodevelopmental disorders (NDDs). Besides major NDDs, there are several rare NDDs, exhibiting specific characteristics and varying levels of severity triggered due to genetic and epigenetic anomalies. The rarity of subjects, paucity of neural tissues for detailed analysis, and the unavailability of disease-specific animal models have hampered detailed comprehension of rare NDDs, imposing heightened challenge to the medical and scientific community until a decade ago. The generation of functional neurons and glia through directed differentiation protocols for patient-derived iPSCs, CRISPR/Cas9 technology, and 3D brain organoid models have provided an excellent opportunity and vibrant resource for decoding the etiology of brain development for rare NDDs caused due to monogenic as well as polygenic disorders. The present review identifies cellular and molecular phenotypes demonstrated from patient-derived iPSCs and possible therapeutic opportunities identified for these disorders. New insights to reinforce the existing knowledge of the pathophysiology of these disorders and prospective therapeutic applications are discussed.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transtornos do Neurodesenvolvimento , Animais , Diferenciação Celular , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/terapia , Neurônios , Estudos Prospectivos
19.
Rev Recent Clin Trials ; 16(4): 409-420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34365959

RESUMO

BACKGROUND: Alcohol dependence is a significant public health problem, contributing to the global health burden. Due to its immense socio-economic burden, various psychosocial, psychological, and pharmacological approaches have attempted to alter the behaviour of the patient misusing or abusing alcohol, but their efficacy is modest at best. Therefore, there is a search for newer treatment approaches, including non-invasive brain stimulation in the management of alcohol dependence. We plan to study the efficacy of Prefrontal Cortex Transcranial direct current stimulation Treatment in Alcohol dependence syndrome (PreCoTTA). METHODS: Two hundred twenty-five male patients with alcohol dependence syndrome will be randomized into the three study arms (2 active, left dorsolateral prefrontal cortex and left orbitofrontal cortex, and 1 sham) to receive a total of 14 tDCS sessions (10 continuous and 4 booster sessions). Data will be collected from these sessions at five different time points on clinical, neuropsychological and biochemical parameters. In addition, 225 healthy age and education matched controls will be administered the neuropsychological test battery at baseline for comparison with the patient group. DISCUSSION: The proposed study aims to explore the use of non-invasive brain stimulation; tDCS as a treatment alternative. We also aim to overcome the methodological gaps of limited sample sizes, fewer tDCS intervention sessions, lack of long-term follow-ups to measure the sustainability of gains, and lack of comprehensive measures to track changes in functioning and abstinence after tDCS intervention. The main outcomes include clinical (reduction in cue-induced craving, time to first drink, and QFI); neuropsychological (risk-taking, impulsivity, and other neuropsychological domains), and biochemical markers (BDNF, leptin and adiponectin). The findings of the study will have translational value as they may help to improve the clinician's ability to effectively manage craving in patients with alcohol dependence syndrome. Furthermore, we will have a better understanding of the neuropsychological and biochemical effects of non-invasive brain stimulation techniques which are of interest in the comprehensive treatment of addiction disorders. TRIAL REGISTRATION: The study has been registered with the Clinical Trials Registry-India (CTRI/ 2020/09/027582) on September 03rd 2020.


Assuntos
Alcoolismo , Estimulação Transcraniana por Corrente Contínua , Alcoolismo/complicações , Alcoolismo/terapia , Fissura , Método Duplo-Cego , Humanos , Masculino , Córtex Pré-Frontal/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Estimulação Transcraniana por Corrente Contínua/métodos
20.
Am J Transl Res ; 13(10): 11081-11093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786044

RESUMO

BACKGROUND: Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-ß superfamily, known to promote the tumor invasion and metastasis. There are continual progresses in understanding the role of BMP signaling pathways in carcinogenesis. However, the biological significance of BMPs in human melanoma has received very little attention. The study aimed to explore the effect of BMP inhibition on melanoma treated with LDN193189 (BMP inhibitor) using a quantitative proteomics approach in a melanoma xenograft model. MATERIALS AND METHODS: Melanoma tumor was induced in C57BL6 mice and treated intraperitoneally with LDN193189 for ten consecutive days. Post-treatment, tumors were collected, and comparative proteomics was performed using a high-resolution Orbitrap Fusion Tribrid mass spectrometer. RESULTS: Treatment of melanoma with LDN193189 at 3 mg/kg body weight twice daily showed a significant decrease in the growth rate of the tumor compared to the other doses tested. Quantitative proteomic profiling identified 3231 proteins. Bioinformatics analysis of the 131 differentially expressed proteins selected by their relative abundance revealed that LDN193189 induces alterations in the cellular and metabolic process and the proteins that are involved in protein binding and catalytic activity in melanoma. CONCLUSIONS: Down-regulation of metallothionein (MT) 1 and MT2, emerging proteins for their role in tumor formation, progression, and drug resistance and transcription factor EB that plays a crucial role in the regulation of basic cellular processes, such as lysosomal biogenesis and autophagy, were identified upon inhibition of the BMP pathway in melanoma, suggesting their roles in melanoma growth. Understanding the role of these proteins will provide new directions for treating cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA