Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 8: 100717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559380

RESUMO

Background: Black garlic is one of the functional food products made from garlic which is processed through aging to improve sensory value and nutritional quality. Aging conditions has a major impact on the psychochemical and functional properties changes of black garlic which is closely related to organosulfur compounds and polysaccharides as the largest component in garlic. Scope and approach: The method used in this research is a systematic review with the aim of research to determine the relationship between reactions during aging and changes in organosulfur, polysaccharides and non-enzymatic browning product compounds as well as the function of black garlic by focusing on certain aspects of aging including temperature, humidity, time, microorganism activity, and pre-treatment application. Key findings and conclusions: Maillard reaction and polysaccharide degradation are still be the dominant reactions and play an important role in black garlic production. High hydrostatic pressure pretreatment could maintains the quality of black garlic so that the black garlic has the same taste characteristics as black garlic in general. Antioxidant properties in black garlic shown increase during thermal treatment. In addition, it is known that the activity of microorganisms plays a role and being potential to increase the quality value of black garlic as well as the antimicrobial activity.

2.
Heliyon ; 10(17): e37054, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39286220

RESUMO

Modern cancer diagnostics and treatment options have greatly improved survival rates; the illness remains a major cause of mortality worldwide. Current treatments for cancer, such as chemotherapy, are not cancer-specific and may cause harm to healthy cells; therefore, it is imperative that new drugs for cancer be developed that are both safe and effective. It has been found that lactic acid bacteria (LAB) have the potential to produce bacteriocins, which could potentially offer a promising alternative for cancer treatment. They have been shown in several studies to be effective against cancer cells while having no effect on healthy cells. More research is needed to fully understand the potential of LAB bacteriocins as anti-cancer medicines, to find the appropriate dose and delivery route, and to conduct clinical trials to evaluate the effectiveness and safety of the products in human patients, as is suggested by this work. Furthermore, LAB bacteriocins may evolve into a significant new class of anti-cancer drugs and food products. Patients with cancer may have a safe and effective alternative treatment option in the form of anti-cancer foods and drugs. Therefore, the aim of this study is to provide an in-depth analysis of the recent breakthroughs and potential future technical advancements of significant bacteriocins that are produced by LAB, how these bacteriocins function, and how these bacteriocins may be utilized as an anti-cancer agent. In addition, the current analysis emphasizes the significant constraints and boundaries that bacteriocins face when they are used as an anti-cancer factor.

3.
Polymers (Basel) ; 15(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37447446

RESUMO

According to a profusion of academic studies on the use of organic materials or biopolymers as key components, the current trajectory of food packaging techniques is showing a positive inclination. Notably, one such biopolymer that has attracted much attention is edible film. The biopolymers that have been stated as constitutive components are composed of polysaccharides, lipids, proteins, or a combination of these, which work together to reinforce one another's properties and create homogenous mixtures. An edible film provides a clear, thin layer that encases foodstuffs, including their packaging. The production and use of edible film have recently been the focus of much research in the field of food polymers. Extending the shelf life of food goods is the goal of this research. Given their great susceptibility to change brought on by outside forces or pollutants, which may result in oxidative rancidity, the proper storage of nutrient-dense food items, particularly meat products, deserves careful study. Many edible films have been found to contain active ingredients, such antimicrobials or antioxidants, that can successfully prevent the spoiling of meat products, a process that can happen in a short amount of time. Surprisingly, a number of scholarly examinations reveal that edible film may be cooked alongside meat because of its organic makeup. We hope that the use of edible film will lead to a more environmentally responsible method of food packaging than has previously been possible.

4.
Polymers (Basel) ; 15(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37631538

RESUMO

Biopolymers of yeast cell walls, such as ß-glucan, mannoprotein, and chitin, may serve as viable encapsulants for probiotics. Due to its thermal stability, ß-glucan is a suitable cryoprotectant for probiotic microorganisms during freeze-drying. Mannoprotein has been shown to increase the adhesion of probiotic microorganisms to intestinal epithelial cells. Typically, chitin is utilized in the form of its derivatives, particularly chitosan, which is derived via deacetylation. Brewery waste has shown potential as a source of ß-glucan that can be optimally extracted through thermolysis and sonication to yield up to 14% ß-glucan, which can then be processed with protease and spray drying to achieve utmost purity. While laminarinase and sodium deodecyle sulfate were used to isolate and extract mannoproteins and glucanase was used to purify them, hexadecyltrimethylammonium bromide precipitation was used to improve the amount of purified mannoproteins to 7.25 percent. The maximum chitin yield of 2.4% was attained by continuing the acid-alkali reaction procedure, which was then followed by dialysis and lyophilization. Separation and purification of yeast cell wall biopolymers via diethylaminoethyl (DEAE) anion exchange chromatography can be used to increase the purity of ß-glucan, whose purity in turn can also be increased using concanavalin-A chromatography based on the glucan/mannan ratio. In the meantime, mannoproteins can be purified via affinity chromatography that can be combined with zymolase treatment. Then, dialysis can be continued to obtain chitin with high purity. ß-glucans, mannoproteins, and chitosan-derived yeast cell walls have been shown to promote the survival of probiotic microorganisms in the digestive tract. In addition, the prebiotic activity of ß-glucans and mannoproteins can combine with microorganisms to form synbiotics.

5.
Biotechnol Rep (Amst) ; 36: e00774, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36388844

RESUMO

Spontaneous fermentation during black tea production involves several reactions, including the oxidation of phenolic compounds. This process has usually been studied without considering the potential involvement of indigenous tea microorganisms. This work utilised a metagenomic technique targeting bacterial 16S rRNA genes and evaluated the profile of phenolic compounds generated during the production of black tea. The resulting data were used to develop correlational and predictive functional analyses related to bacterial dynamics and the syntheses of various phenolic compounds. In particular, the genera Methylobacterium and Devosia were correlated with gallic acid and quercetin. Concurrently, the genera Sphingomonas, Chryseobacterium and Aureimonas were correlated with kaempferol, theaflavins, thearubigins and theabrownins. These results, supported by predicted functional analysis based on 16S rRNA genes associated with phenolic compounds, indicated that yfiH (polyphenol oxidase) and katG (catalase-peroxidase) are likely the dominant genes of the bacterial community involved in the black tea production process. This research suggests that bacteria could potentially contribute to the production process of black tea.

6.
Foods ; 11(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36230196

RESUMO

Sodium is a necessary nutrient for regulating extracellular fluid and transferring molecules around cell membranes with essential functions. However, the prevalence of some diseases is related to unnecessary sodium intake. As a result, a particular problem for the food industry remains a matter of sodium content in foods. It is considered that customer acceptance is associated with salt perception dynamics related to the evolution of food production. It is a significant challenge and technique to minimize the salt content of various foods and provide replacement products with substantial reductions in salt levels. This review summarizes salt reduction strategies related to health problems based on traditional review methodology, with practical and methodological screening performed to determine the appropriate reference sources. Various technological (salt replacement, food reformulation, size and structural modifications, alternative processing, and crossmodal odor interaction) and behavioral strategies (memory process, gradual salt reduction, and swap) are identified in this work, including a deeper understanding of the principles for reducing sodium content in foods and their effect on food characteristics and potential opportunities for the food industry. Thereby, the food industry needs to find the proper combination of each strategy's advantages and disadvantages to reduce salt consumption while maintaining product quality.

7.
Membranes (Basel) ; 12(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35736343

RESUMO

Antimicrobial composite edible film can be a solution for environmentally friendly food packaging, which can be made from fermented cheese whey containing an antimicrobial agent and cassava peel waste that contains starch. The research aims to determine the formulation of fermented cheese whey and cassava peel waste starch, resulting in an antimicrobial composite edible film with the best physical, mechanical, and water vapour permeability (WVP) properties, as well as with high antimicrobial activity. This research was conducted using experimental methods with nine composite edible film formulation treatments with three replications. Three variations in the fermented cheese whey and cassava peel starch ratio (v/v) (1:3, 1:1, 3:1) were combined with variations in the addition of glycerol (20%, 33%, 45%) (w/w) in the production of the composite edible film. Then, the physical characteristics such as elongation at break, tensile strength, WVP, colour, and antimicrobial effect of its film-forming solution were observed. The results showed that 24 h of whey fermentation with Candida tropicalis resulted in an 18.50 mm inhibition zone towards Pseudomonas aeruginosa. The best characteristic of the film was obtained from the formulation of a whey:starch ratio of 1:3 and 33% glycerol, which resulted in a thickness value of 0.21 mm, elongation at break of 19.62%, tensile strength of 0.81 N/mm2, WVP of 3.41 × 10-10·g/m·s·Pa at a relative humidity (RH) of 100%-35%, and WVP of 9.84 × 10-10·g/m·s·Pa at a RH of 75%-35%, with an antimicrobial activity towards P. aeruginosa of 5.11 mm.

8.
J Adv Pharm Technol Res ; 13(1): 56-60, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223442

RESUMO

Pomegranate peels (PGPs) are known to have the potential as antibacterial not only from their nutrient content but also the microflora. The activities might be caused by the existence of indigenous yeast that can be utilized to inhibit the growth of pathogenic bacteria. This study aims to identify antibacterial and antioxidant activity of indigenous yeast isolated from PGP. The research was conducted by experimental methods and followed by descriptive analysis. The study was done by the isolation of indigenous yeast from PGPs, which was identified using the rRNA sequence analysis of internal transcribed spacer (ITS) region with the primers of ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3') and then compared with Basic Local Alignment Search Tools (BLAST) algorithm toward the GenBank. Antibacterial activities of indigenous yeast were tested with agar plug diffusion and time kill test toward Escherichia coli and Staphylococcus aureus. The yeast identification obtained two isolates similar to Hanseniaspora uvarum CBS 314 and two isolates of Pichia kudriavzevii ATCC 6258 which have antibacterial activity against E. coli and S. aureus. P. kudriavzevii PGP D4 have best antimicrobial activities with a strong activity against E. coli (±9 mm) and medium activity against S. aureus (±3.1 mm).

9.
Foods ; 10(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34828900

RESUMO

Yeast can be isolated from tofu wastewater and the cell wall in the form of ß-glucan can act as a natural decontaminant agent. This study aimed to isolate and characterize native yeast from tofu wastewater, which can be extracted to obtain ß-glucan and then identify the yeast and its ß-glucan activity regarding antifungal ability against Aspergillus flavus and aflatoxin-reducing activity towards aflatoxin B1 (AFB1) and B2 (AFB2). Tofu wastewater native yeast was molecularly identified, and the growth observed based on optical density for 96 h and the pH also measured. ß-glucan was extracted from native yeast cell walls with the acid-base method and then the inhibition activity towards A. flavus was tested using the well diffusion method and microscopic observation. AFB1 and AFB2 reduction were identified using HPLC LC-MS/MS. The results showed that the native yeast isolated was Pichia norvegensis with a ß-glucan yield of 6.59%. Pichia norvegensis and its ß-glucan showed an inhibition zone against Aspergillus flavus of 11.33 ± 4.93 and 7.33 ± 3.51 mm, respectively. Total aflatoxin-reducing activity was also shown by Pichia norvegensis of 26.85 ± 2.87%, and ß-glucan of 27.30 ± 1.49%, while AFB1- and AFB2-reducing activity by Pichia norvegensis was 36.97 ± 3.07% and 27.13 ± 1.69%, and ß-glucan was 27.13 ± 1.69% and 32.59 ± 4.20%, respectively.

10.
Food Res Int ; 150(Pt A): 110746, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865764

RESUMO

Application of high-value algal metabolites (HVAMs) in cosmetics, additives, pigments, foods and medicines are very important. These HVAMs can be obtained from the cultivation of micro- and macro-algae. These metabolites can benefit human and animal health in a physiological and nutritional manner. However, because of conventional extraction methods and their energy and the use of pollutant solvents, the availability of HVAMs from algae remains insufficient. Receiving their sustainability and environmental benefits have recently made green extraction technologies for HVAM extractions more desirable. But very little information is available about the technology of green extraction of algae from these HVAM. This review, therefore, highlights the supercritical fluid extraction (SCFE) as principal green extraction technologyand theirideal parameters for extracting HVAMs. In first, general information is provided concerning the HVAMs and their components of macro and micro origin. The review also includes a description of SCFE technology's properties, instrumentation operation, solvents used, and the merits and demerits. Moreover, there are several HVAMs associated with their numerous high-level biological activities which include high-level antioxidant, anti-inflammatory, anticancer and antimicrobial activity and have potential health-beneficial effects in humans since they are all HVAMs, such as foods and nutraceuticals. Finally, it provides future insights, obstacles, and suggestions for selecting the right technologies for extraction.


Assuntos
Cromatografia com Fluido Supercrítico , Animais , Antioxidantes , Suplementos Nutricionais , Humanos , Plantas , Tecnologia
11.
Saudi J Biol Sci ; 28(12): 6765-6773, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34866975

RESUMO

ß-glucan is a natural polysaccharide derivative composed of a group of glucose monomers with ß-glycoside bonds that can be synthesized intra- or extra-cellular by various microorganisms such as yeasts, bacteria, and moulds. The study aimed to discover the potential of various microorganisms such as Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto in producing ß-glucan. The experimental method used and the data were analyzed descriptively. The four microorganisms above were cultured under a submerged state in Yeast glucose (YG) broth for 120 h at 30 °C with 200 rpm agitation. During the growth, several parameters were examined including total population by optical density, the pH, and glucose contents of growth media. ß-glucan was extracted using acid-alkaline methods from the growth media then the weight was measured. The results showed that S. cerevisiae, A. oryzae X. campestris, and B. natto were prospective for ß-glucans production in submerged fermentation up to 120 h. The highest ß-glucans yield was shown by B. natto (20.38%) with the ß-glucans mass of 1.345 ± 0.08 mg and globular diameter of 600 µm. The highest ß-glucan mass was achieved by A. oryzae of 82.5 ± 0.03 mg with the total population in optical density of 0.1246, a final glucose level of 769 ppm, the pH of 6.67, and yield of 13.97% with a globular diameter of 1400 µm.

12.
Front Nutr ; 8: 747956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621776

RESUMO

An entirely unknown species of coronavirus (COVID-19) outbreak occurred in December 2019. COVID-19 has already affected more than 180 million people causing ~3.91 million deaths globally till the end of June 2021. During this emergency, the food nutraceuticals can be a potential therapeutic candidate. Curcumin is the natural and safe bioactive compound of the turmeric (Curcuma longa L.) plant and is known to possess potent anti-microbial and immuno-modulatory properties. This review paper covers the various extraction and quantification techniques of curcumin and its usage to produce functional food. The potential of curcumin in boosting the immune system has also been explored. The review will help develop insight and new knowledge about curcumin's role as an immune-booster and therapeutic agent against COVID-19. The manuscript will also encourage and assist the scientists and researchers who have an association with drug development, pharmacology, functional foods, and nutraceuticals to develop curcumin-based formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA