Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JBMR Plus ; 8(5): ziae036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606150

RESUMO

The increased risk of fractures in patients with type 1 diabetes mellitus (T1DM) is nowadays well recognized. However, the exact mechanism of action of diabetic bone disease has not been fully elucidated. MicroRNAs (miRNAs) are gene regulators that operate post-transcriptionally and have been implicated in the development of various metabolic disorders including T1DM. Previous studies have implicated a role for miR-144-5p and miR-21-5p, which are involved in controlling oxidative stress by targeting Nrf2, in T1DM. To date, it is unclear whether miR-144-5p and miR-21-5p affect bone health in T1DM. Thus, this study aimed to investigate the influence of miR-144-5p and miR-21-5p knockdown in the development of bone disease in T1DM male mice. Therefore, T1DM was induced in 10-wk-old male mice using streptozotocin (STZ). One week later, after development of hyperglycemia, antagomir-144-5p and antagomir-21-5p or their non-targeting control were administered at 10 mg/kg BW once a week until the end of the experiment. At 14 wk of age, glucose levels, bone, and fat mass were analyzed. The results revealed that treating T1DM male mice with antagomir-144-5p and antagomir-21-5p did not protect against diabetes development or bone loss, despite the successful downregulation of the miRNAs and the normalization of Nrf2 mRNA levels in bone tissue. Histological and serological parameters of bone formation or resorption were not altered by the antagomir treatment. Finally, we measured the expression of miRNA-144-5p or miRNA-21-5p in the serum of 30 individuals with T1DM and compared them to non-diabetic controls, but did not find an altered expression of either miRNA. In conclusion, the knockdown of miR-144-5p and miR-21-5p does not affect STZ-induced diabetes development or loss of bone mass in male mice. However, it does normalize expression of the anti-oxidant factor Nrf2 in diabetic bone tissue.

2.
Bone Res ; 10(1): 33, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35383146

RESUMO

Identification of regulators of osteoblastogenesis that can be pharmacologically targeted is a major goal in combating osteoporosis, a common disease of the elderly population. Here, unbiased kinome RNAi screening in primary murine osteoblasts identified cyclin-dependent kinase 5 (Cdk5) as a suppressor of osteoblast differentiation in both murine and human preosteoblastic cells. Cdk5 knockdown by siRNA, genetic deletion using the Cre-loxP system, or inhibition with the small molecule roscovitine enhanced osteoblastogenesis in vitro. Roscovitine treatment significantly enhanced bone mass by increasing osteoblastogenesis and improved fracture healing in mice. Mechanistically, downregulation of Cdk5 expression increased Erk phosphorylation, resulting in enhanced osteoblast-specific gene expression. Notably, simultaneous Cdk5 and Erk depletion abrogated the osteoblastogenesis conferred by Cdk5 depletion alone, suggesting that Cdk5 regulates osteoblast differentiation through MAPK pathway modulation. We conclude that Cdk5 is a potential therapeutic target to treat osteoporosis and improve fracture healing.

3.
Bone ; 145: 115787, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33301964

RESUMO

microRNAs have evolved as important regulators of multiple biological pathways essential for bone homeostasis, and microRNA research has furthered our understanding of the mechanisms underlying bone health and disease. This knowledge, together with the finding that active or passive release of microRNAs from cells into the extracellular space enables minimal-invasive detection in biofluids (circulating miRNAs), motivated researchers to explore microRNAs as biomarkers in several pathologic conditions, including bone diseases. Thus, exploratory studies in cohorts representing different types of bone diseases have been performed. In this review, we first summarize important molecular basics of microRNA function and release and provide recommendations for best (pre-)analytical practices and documentation standards for circulating microRNA research required for generating high quality data and ensuring reproducibility of results. Secondly, we review how the genesis of bone-derived circulating microRNAs via release from osteoblasts and osteoclasts could contribute to the communication between these cells. Lastly, we summarize evidence from clinical research studies that have investigated the clinical utility of microRNAs as biomarkers in musculoskeletal disorders. While previous reviews have mainly focused on diagnosis of primary osteoporosis, we have also included studies exploring the utility of circulating microRNAs in monitoring anti-osteoporotic treatment and for diagnosis of other types of bone diseases, such as diabetic osteopathy, bone degradation in inflammatory diseases, and monogenetic bone diseases.


Assuntos
MicroRNA Circulante , MicroRNAs , Biomarcadores , Densidade Óssea , Osso e Ossos , MicroRNA Circulante/genética , MicroRNAs/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA