Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522281

RESUMO

Understanding the origins of sediment transport in river systems is crucial for effective watershed management, especially after catastrophic events. This information is essential for the development of integrated strategies that guarantee water security in river basins. The present study aimed to investigate the rupture of the B1 tailings dam of the Córrego do Feijão mine, which drastically affected the Brumadinho region (Minas Gerais, Brazil). To address this issue, a confluence-based sediment fingerprinting approach was developed through the SedSAT model. Uncertainty was assessed through Monte Carlo simulations and Mean Absolute Error (MAE). Estimates of the overall average contributions of each tributary were quantified for each station and annually during the period 2019-2021. It was observed that the sampling point PT-09, closest to the dam breach, contributed to almost 80% of the Paraopeba River in 2019. Despite the dredging efforts, this percentage increased to 90% in 2020 due to the need to restore the highly degraded area. Additionally, the main tributaries contributing to sediment increase in the river are Manso River "TT-03" (almost 36%), associated with an area with a high percentage of urban land use, and Cedro stream "TT-07" (almost 71%), whose geology promotes erosion, leading to higher sediment concentration. Uncertainties arise from the limited number of available tracers, variations caused by dredging activities, and reduced data in 2020 due to the pandemic. Parameters such as land use, riparian vegetation degradation, downstream basin geology, and increased precipitation are key factors for successfully assessing tributary contributions to the Paraopeba River. The obtained results are promising for a preliminary analysis, allowing the quantification of key areas due to higher erosion and studying how this disaster affected the watershed. This information is crucial for improving decision-making, environmental governance, and the development of mitigating measures to ensure water security. This study is pioneering in evaluating this methodology in watersheds affected by environmental disasters, where restoration efforts are ongoing.


Assuntos
Monitoramento Ambiental , Colapso Estrutural , Monitoramento Ambiental/métodos , Conservação dos Recursos Naturais , Efeitos Antropogênicos , Sedimentos Geológicos , Política Ambiental , Brasil
2.
Sci Total Environ ; 934: 173110, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740211

RESUMO

Discerning the impact of anthropogenic impacts requires the implementation of bioindicators that quantify the susceptibilities and vulnerabilities of natural terrestrial and aquatic ecosystems to perturbation and transformation. Although legal regulations in Brazil recognize the value of bioindicators in monitoring water quality, the depreciation of soil conditions has yet to receive adequate attention. Thus, our study aimed to evaluate the potential of odonates (dragonflies and damselflies) as amphibiotic bioindicators to reflect the correlation between the degradation of aquatic and terrestrial habitats in pasture-dominated landscapes. We assessed the relationship between the biotic indices of Odonata and the conservation status of preserved riparian landscapes adjacent to anthropogenically altered pastures in 40 streams in the Brazilian savannah. Our results support the hypothesis that Odonata species composition may be a surrogate indicator for soil and water integrity, making them promising sentinels for detecting environmental degradation and guiding conservation strategies in human-altered landscapes. Importantly, while the Zygoptera/Anisoptera species ratio is a useful bioindicator tool in Brazilian forest, it is less effective in the open savannah here, and so an alternative index is required. Importantly, while the Zygoptera/Anisoptera species ratio is a useful bioindicator tool in Brazilian forest, it is less effective in the open savannah here, and so an alternative index is required. On the other hand, our results showed the Dragonfly Biotic Index to be a suitable tool for assessing freshwater habitats in Brazilian savannah. We also identified certain bioindicator species at both ends of the environment intactness spectrum.


Assuntos
Monitoramento Ambiental , Água Doce , Odonatos , Solo , Animais , Brasil , Monitoramento Ambiental/métodos , Solo/química , Ecossistema
3.
Sci Total Environ ; 912: 169136, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072273

RESUMO

The use of tailings dams in the mining industry is recurrent and a matter of concern given the risk of collapse. The planning of tailings dam's emplacement usually attends construction design criteria and site geotechnical properties, but often neglects the risk of installing the depositional facilities in potentially unstable landscapes, namely those characterized by steep slopes and(or) high drainage densities. In order to help bridging this gap, the present study developed a framework model whereby geomorphologic vulnerability is assessed by a set of morphometric parameters (e.g., drainage density; relief ratio; roughness coefficient). Using the Ribeirão Ferro-Carvão micro-basin (3265.16 ha) as test site, where six dams currently receive tailings from the mining of iron-ore deposits in the Brumadinho region (Minas Gerais, Brazil) and one has collapsed in 25 January 2019 (the B1 dam of Córrego do Feijão mine of Vale, S.A.), the risk of dam instability derived from geomorphologic vulnerability was assessed and alternative suitable locations were highlighted when applicable. The results made evident the location of five dams (including the collapsed B1) in high-risk regions and two in low-risk regions, which is preoccupying. The alternative locations represent 58 % of Ribeirão Ferro-Carvão micro-basin, which is a reasonable and workable share. Overall, the study exposed the fragility related with tailings dams' geography, which is not restricted to the studied micro-basin, because dozens of active tailings dams exist in the parent basin (the Paraopeba River basin) that can also be vulnerable to geomorphologically-dependent hydrologic hazards such as intensive erosion, valley incision or flash floods. Attention to this issue is therefore urgent to prevent future tragedies related with tailings dams' breaks, in the Paraopeba River basin or elsewhere, using the proposed framework model as guide.

4.
World Neurosurg ; 187: 124-132, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641246

RESUMO

OBJECTIVE: Magnetic resonance imaging-guided laser interstitial thermal therapy (MRIgLITT) has been proven safe and effective for the treatment of focal epilepsy of different etiologies. It has also been used to disconnect brain tissue in more extensive or diffuse epilepsy, such as corpus callosotomy and hemispherotomy. METHODS: In this study, we report a case of temporo-parieto-occipital disconnection surgery performed using MRIgLITT assisted by a robotic arm for refractory epilepsy of the posterior quadrant. A highly realistic cadaver simulation was performed before the actual surgery. RESULTS: The patient was a 14-year-old boy whose seizures began at the age of 8. The epilepsy was a result of a left perinatal ischemic event that caused a porencephalic cyst, and despite receiving multiple antiepileptic drugs, the patient continued to experience daily seizures which led to the recommendation of surgery. CONCLUSIONS: A Wada test lateralized language in the right hemisphere. Motor and sensory function was confirmed in the left hemisphere through magnetic resonance imaging functional studies and NexStim. The left MRIgLITT temporo-parieto-occipital disconnection disconnection was achieved using 5 laser fibers. The patient followed an excellent postoperative course and was seizure-free, with no additional neurological deficits 24 months after the surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Terapia a Laser , Imageamento por Ressonância Magnética , Lobo Occipital , Procedimentos Cirúrgicos Robóticos , Humanos , Masculino , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Adolescente , Terapia a Laser/métodos , Lobo Occipital/cirurgia , Lobo Occipital/diagnóstico por imagem , Procedimentos Cirúrgicos Robóticos/métodos , Lobo Parietal/cirurgia , Lobo Parietal/diagnóstico por imagem , Lobo Temporal/cirurgia , Lobo Temporal/diagnóstico por imagem , Cirurgia Assistida por Computador/métodos , Procedimentos Neurocirúrgicos/métodos
5.
Sci Total Environ ; 949: 174970, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059671

RESUMO

Tailings dams' disasters begin a stage of river water contamination with no endpoint at first sight. But when the river was formerly used for public water supply and the use was suspended as consequence of a dam break, a time window for safe suspension lift must be anticipated to help water managers. The purpose of this study was to seek for that moment in the case of Brumadinho dam disaster which occurred in 2019 and injected millions of cubic meters of iron- and manganese-rich tailings into the Paraopeba River, leading to the suspension of public water supply to Belo Horizonte metropolitan region with this resource, until now. To accomplish the proposed goal, an assemblage of artificial intelligence and socio-economic development models were used to anticipate precipitation, river discharge and metal concentrations (iron, manganese) until 2033. Then, the ratios of metal concentrations between impacted and non-impacted sites were determined and values representing extreme events of river discharge were selected for further assessment. A ratio ≈1 generally indicates a similarity between impacted and non-impacted areas or, put another way, a return of impacted areas to a pre-rupture condition. Moreover, when the ratio is estimated under the influence of peak flows, then a value of ≈1 indicates a return to pre-rupture conditions under the most unfavorable hydrologic regimes, thus a safe return. So, the extreme ratios were plotted against time and fitted to a straight line with intercept-x representing the requested safe time. The results pointed to 6.57 years after the accident, while using iron as contaminant indicator, or 8.71 years when manganese was considered. Despite of being a relatively low-risk timeframe, the suspension lift should be implemented in phases and monitored for precaution of potential sporadic contamination events, while dredging of the tailings from impacted areas should continue and be accelerated.

6.
Sci Total Environ ; 949: 174971, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39069187

RESUMO

The B1 tailings dam of Córrego do Feijão iron-ore mine owned by Vale, S.A. company collapsed in 25 January 2019 releasing to the Ferro-Carvão stream watershed (32.6 km2) as much as 11.7 Mm3 of mine waste. A major share (8.9 Mm3) has been deposited along the stream channel and margins forming a 2.7 km2 patch. The main purpose of this study was to question whether the tailings deposit impacted the local water cycle and how. Using the Soil and Water Assessment Tool (SWAT) hydrologic model, the water balance components of 36 hydrologic response units (HRU) were calculated for pre- (S1) and post- (S2) B1 dam rupture scenarios represented by appropriate soil, land use and tailings cover. The results revealed an increase of evapotranspiration from S1 to S2, related to the sudden removal of vegetation from the stream valley and replacement with a blanket of mud, which raised the exposure of Earth's surface to sunlight and hence soil evaporation. For 11 HRU (10.3 km2) located around the tailings deposit, a decrease in lateral flow was observed, accompanied by an increase in percolation and a slight increase in groundwater flow. In this case, the water balance changes observed between S1 and S2 reflected a barrier effect imposed to the lateral flows by the tailings, which shifted the flows towards the vertical direction (percolation). Thus, the water followed an easier vertical route until reaching the shallow aquifer and being converted into groundwater flow. As per the modelling outcomes, the hydrologic impacts of B1 dam rupture are relevant because they affected 1/3 of Ferro-Carvão stream watershed, and hence claim for the complete removal of the tailings.

7.
Sci Total Environ ; 937: 173407, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38797427

RESUMO

Following the B1 dam collapse at Córrego do Feijão Mine, actions were taken to address environmental damage and enhance the quality of water in the Paraopeba River. Natural processes in the river involve gradual reduction of contamination through dispersion and downstream transportation of tailings-a slow, nature-driven process. Dredging, a human intervention, aimed to expedite recovery. Hence, this study aimed to explore dredging's role in reducing contamination in the impacted Paraopeba River zone. Analysis revealed a direct link between dredging and post-collapse turbidity, though recent trends suggest a lessening impact on pre-collapse conditions. Distinct seasonal variations were observed in iron and manganese concentrations, peaking during wet seasons and displaying notable upstream-downstream disparities. An analysis of ratios (downstream/upstream) was conducted to understand and even predict the return to pre-collapse conditions. Wet season averages for iron and manganese decreased by around 90 % over time, with standard deviations reducing by about 48 % and 58 %, respectively. In the dry season, the averages decreased by over 100 %, indicating water quality improvements surpassing pre-collapse levels. Standard deviations also decreased significantly, by approximately 67 % and 79 %, respectively. Employing an exponential decay model revealed that the contribution of dredging in the dry period is negligible, but in the wet period the contribution can be estimated at 28.6 % in the case of iron and 25 % in the case of manganese. While the models performed well based on extensive data, some limitations occur in estimating dredging contribution rates. The model's sensitivity might overlook influential factors, underscoring the importance of considering sediment nature and dredged area extent in understanding water quality dynamics. Despite these potential limitations, this investigation provides crucial insights into the intricate relationship between dredging and water quality in the Paraopeba River. These findings pave the way for future studies aimed at deeper exploration and more accurate assessments of this association.

8.
Environ Pollut ; 347: 123661, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417605

RESUMO

Metal and nutrient pollution, soil erosion, and alterations in climate and hydrology are prevalent issues that impact the water quality of riverine systems. However, integrated approaches to assess and isolate causes and paths of river water pollution are scarce, especially in the case of watersheds impacted by multiple hazardous activities. Therefore, a framework model for investigating the multiple sources of river water pollution was developed. The chosen study area was the Paraopeba River basin located in the Minas Gerais, Brazil. Besides multiple agriculture, industrial, and urban pollution sources, this region was profoundly affected by the rupture of the B1 tailings dam (in January 2019) at the Córrego do Feijão mine, resulting in the release of metal-rich waste. Considering this situation, thirty-nine physicochemical and hydromorphological parameters were examined in the Paraopeba River basin, in the 2019-2023 period. The analysis involved various statistical techniques, including bivariate and multivariate methods such as correlation analysis, principal component analysis, and clustering. The Paraopeba River was mainly impacted by metal contamination resulting from the dam collapse, whereas nutrient contamination, mainly from urban and industrial discharges, predominantly affected its tributaries. Additionally, the elevated concentrations of aluminum, iron, nitrate, and sulfate in both main river and tributaries can be attributed to diffuse and point source pollution. In terms of hydromorphology and soil type, the interaction between woody vegetation and erosion-resistant soils, especially latosols, contributes to the stability of riverbanks in the main river. Meanwhile, in the tributaries, the presence of neosols and sparse vegetation in urbanized areas promoted riverbank erosion potentially amplifying pollution. While the study was conducted in a particular watershed, the findings are based on a methodology that can be applied universally. Hence, the insights on surface water quality from this research can be a valuable resource for researchers studying watersheds with diverse pollution sources.


Assuntos
Rios , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Poluição da Água/análise , Qualidade da Água , Solo
9.
Sci Total Environ ; 949: 175026, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097022

RESUMO

Tailings dams' breaks are environmental disasters with direct and intense degradation of soil. This study analyzed the impacts of B1 tailings dam rupture occurred in the Ribeirão Ferro-Carvão watershed (Brumadinho, Brazil) in January 25, 2019. Soil organic carbon (SOC) approached environmental degradation. The analysis encompassed wetlands (high-SOC pools) located in the so-called Zones of Decreasing Destructive Capacity (DCZ5 to DCZ1) defined along the Ferro-Carvão's stream bed and banks after the disaster. Remote sensed water indices were extracted from Landsat 8 and Sentinel-2 satellite images spanning the 2017-2021 period and used to distinguish the wetlands from other land covers. The annual SOC was extracted from the MapBiomas repository inside and outside the DCZs in the same period, and assessed in the field in 2023. Before the dam collapse, the DCZs maintained stable levels of SOC, while afterwards they decreased substantially reaching minimum values in 2023. The reductions were abrupt: for example, in the DCZ3 the decrease was from 51.28 ton/ha in 2017 to 4.19 ton/ha in 2023. Besides, the SOC increased from DCZs located near to DCZs located farther from the dam site, a result attributed to differences in the percentages of clay and silt in the tailings, which also increased in the same direction. The Ferro-Carvão stream watershed as whole also experienced a slight reduction in the average SOC levels after the dam collapse, from nearly 43 ton/ha in 2017 to 38 ton/ha in 2021. This result was attributed to land use changes related with the management of tailings, namely opening of accesses to remove them from the stream valley, creation of spaces for temporary deposits, among others. Overall, the study highlighted the footprints of tailings dams' accidents on SOC, which affect not only the areas impacted with the mudflow but systemically the surrounding watersheds. This is noteworthy.

10.
Sci Total Environ ; 873: 162303, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36805064

RESUMO

Water security is an expression of resilience. In the recent past, scientists and public organizations have built considerable work around this concept launched in 2013 by the United Nations as "the capacity of a population to safeguard sustainable access to adequate quantities of acceptable quality water for sustaining livelihoods, human well-being, and socio-economic development, for ensuring protection against water-borne pollution and water-related disasters, and for preserving ecosystems in a climate of peace and political stability". In the 27th Conference of the Parties (COP27), held in Sharm El-Sheikh (Egypt) in last November, water security was considered a priority in the climate agenda, especially in the adaption and loss and damage axes. This discussion paper represents the authors' opinion about how the conference coped with water security and what challenges remain to attend. As discussion paper, it had the purpose to stimulate further discussion in a broader scientific forum.

11.
J Neurosurg Pediatr ; 31(1): 61-70, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272116

RESUMO

OBJECTIVE: Since 2007, the authors have performed 34 hemispherotomies and 17 posterior quadrant disconnections (temporoparietooccipital [TPO] disconnections) for refractory epilepsy at Sant Joan de Déu Barcelona Children's Hospital. Incomplete disconnection is the main cause of surgical failure in disconnective surgery, and reoperation is the treatment of choice. In this study, 6 patients previously treated with hemispherotomy required reoperation through open surgery. After the authors' initial experience with real-time MRI-guided laser interstitial thermal therapy (MRIgLITT) for hypothalamic hamartomas, they decided to use this technique instead of open surgery to complete disconnective surgeries. The objective was to report the feasibility, safety, and efficacy of MRIgLITT to complete hemispherotomies and TPO disconnections for refractory epilepsy in pediatric patients. METHODS: Eight procedures were performed on 6 patients with drug-resistant epilepsy. Patient ages ranged between 4 and 18 years (mean 10 ± 4.4 years). The patients had previously undergone hemispherotomy (4 patients) and TPO disconnection (2 patients) at the hospital. The Visualase system assisted by a Neuromate robotic arm was used. The ablation trajectory was planned along the residual connection. The demographic and epilepsy characteristics of the patients, precision of the robot, details of the laser ablation, complications, and results were prospectively collected. RESULTS: Four patients underwent hemispherotomy and 2 underwent TPO disconnection. Two patients, including 1 who underwent hemispherotomy and 1 who underwent TPO disconnection, received a second laser ablation because of persistent seizures and connections after the first treatment. The average precision of the system (target point localization error) was 1.7 ± 1.4 mm. The average power used was 6.58 ± 1.53 J. No complications were noted. Currently, 5 of the 6 patients are seizure free (Engel class I) after a mean follow-up of 20.2 ± 5.6 months. CONCLUSIONS: According to this preliminary experience, laser ablation is a safe method for complete disconnective surgeries and allowed epilepsy control in 5 of the 6 patients treated. A larger sample size and longer follow-up periods are necessary to better assess the efficacy of MRIgLITT to complete hemispherotomy and TPO disconnection, but the initial results are encouraging.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Terapia a Laser , Robótica , Criança , Humanos , Pré-Escolar , Adolescente , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/etiologia , Resultado do Tratamento , Epilepsia/cirurgia , Epilepsia/complicações , Imageamento por Ressonância Magnética/métodos , Terapia a Laser/métodos , Lasers , Estudos Retrospectivos
12.
Sci Total Environ ; 891: 164426, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236470

RESUMO

The collapse of B1 dam at the Córrego do Feijão mine of Vale, S.A., located in the Ferro-Carvão stream watershed (Brazil), released 11.7 Mm3 of tailings rich in iron and manganese, and 2.8 Mm3 entered the Paraopeba River 10 km downstream. Seeking to predict the evolution of environmental deterioration in the river since the dam break on January 25, 2019, the present study generated exploratory and normative scenarios based on predictive statistical models, and proposed mitigating measures and subsides to ongoing monitoring plans. The scenarios segmented the Paraopeba into three sectors: "anomalous" for distances ≤63.3 km from the B1 dam site, "transition" (63.3-155.3 km), and "natural" (meaning unimpacted by the mine tailings in 2019; >155.3 km). The exploratory scenarios predicted a spread of the tailings until reaching the "natural" sector in the rainy season of 2021, and their containment behind the weir of Igarapé thermoelectric plant located in the "anomalous" sector, in the dry season. Besides, they predicted the deterioration of water quality and changes to the vigor of riparian forests (NDVI index) along the Paraopeba River, in the rainy season, and a restriction of these impacts to the "anomalous" sector in the dry season. The normative scenarios indicated exceedances of chlorophyll-a in the period January 2019-January 2022, but not exclusively caused by the rupture of B1 dam as they also occurred in areas not affected by the accident. Conversely, the manganese exceedances clearly flagged the dam failure, and persist. The most effective mitigating measure is likely the dredging of the tailings in the "anomalous" sector, but currently it represents solely 4.6 % of what has entered the river. Monitoring is paramount to update the scenarios until the system enters a route towards rewilding, and must include water and sediments, the vigor of riparian vegetation, and the dredging.

13.
Eur J Paediatr Neurol ; 41: 55-62, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36272355

RESUMO

OBJETIVE: Analyze pre-surgical evaluation modalities, surgical failures, long-term results of surgery and neurocognitive outcome in children with Low-grade Epilepsy Associated brain Tumors (LEAT). METHODS: Retrospective observational study of 37 children who underwent epilepsy surgery, with a minimum follow-up of 12 months. At time of surgery, pharmaco-sensitivity (Group 1; n = 8) and drug-resistance (Group 2; n = 29), were considered. RESULTS: Age range of seizure onset was 5 months-14 years (mean 5.73years) and age at surgery was 2.2-18.7years (mean 10.7years). Gangliogliomas (35.1%) or DNTs (29.7%), combined or not to a focal cortical dysplasia (FCD), were the most frequent. Extended lesionectomy 16 children (43.2%) were the most frequently used surgical approach in both groups. At one year of follow-up, 36 children (97.2%) were classified as Engel I. Within the age-range studied, duration of epilepsy and time to surgery appeared to have no impact on clinical and neurocognitive outcome in both groups. It is noteworthy, however, that antiseizure medications (ASMs) were withdrawn in 100% of the pharmacosensitive group vs 34.5% of the drug-resistant group (p = 0.002). In children with a pharmaco-sensitive epilepsy, neurocognitive evaluation showed significant improvement in the verbal comprehension index (p = 0.029). CONCLUSIONS: Epilepsy-surgery is a safe therapeutic option for LEATs including for children with seizures controlled by ASMs. Presence of associated lesions is not rare. Comprehensive pre-surgical evaluation increases the chances for control of the seizures, the early discontinuation of medications and favours neurocognitive development.


Assuntos
Neoplasias Encefálicas , Epilepsia , Malformações do Desenvolvimento Cortical , Criança , Humanos , Lactente , Epilepsia/etiologia , Epilepsia/cirurgia , Epilepsia/patologia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Convulsões/etiologia , Convulsões/cirurgia , Encéfalo/patologia , Malformações do Desenvolvimento Cortical/patologia , Estudos Retrospectivos , Resultado do Tratamento
14.
Sci Total Environ ; 809: 151157, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34687709

RESUMO

In January 25, 2019, the B1 dam of Córrego do Feijão mine located in Brumadinho municipality (Minas Gerais, Brazil) collapsed and injected nearly 2.8 Mm3 of iron (Fe)- and manganese (Mn)-rich tailings in the Paraopeba River. This study assessed the contribution of tailings to the contamination of sediments and water by those metals. The dataset was built through daily to weekly samplings executed in the two years following the event, at 27 sites located along the Paraopeba plus 9 sites located at the confluence of main tributaries. The results evidenced a distinct contribution in the sectors "Anomalous" (8.6-63.3 km downstream from the dam) and "Natural" (115.8-341.6 km). The "Anomalous" sector presented large Fe/Al (12.2 ± 6.4) and Mn/Al (0.33 ± 0.19) ratios in sediments, thus being rich in tailings, while the "Natural" sector presented small ratios (2.4 ± 1.0; 0.06 ± 0.03) comparable to the natural sediments. A 500-700 m3/s stream flow discharge in the Paraopeba caused pronounced drops to the Fe/Al and Mn/Al ratios in the "Anomalous" sector, attributed to the mixture of contaminated sediments from the main water course with uncontaminated sediments injected by the tributaries during the event. Non-linear regressions showed Fe/Al and Mn/Al declines in the "Anomalous" sector, related with tailings mobilization downstream. The concentrations of Fe and Al in the sediments correlated positively with the corresponding concentrations in the Paraopeba water, conditioned by raising discharge rates and variations in the water pH. The contribution of tailings to the Fe correlation was demonstrated. No direct relation was established between the Mn concentrations in water and stream discharge, because manganese is associated with fine particles in the tailings that are mobilized to the water column even under low flows. The preliminary results of Seasonal Autoregressive Integrated Moving Average models predicted the return of Paraopeba to a pre-collapse condition in 7-11 years.


Assuntos
Poluentes Químicos da Água , Água , Brasil , Monitoramento Ambiental , Sedimentos Geológicos , Rios , Poluentes Químicos da Água/análise
15.
MethodsX ; 9: 101858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164431

RESUMO

The method presented in this study assesses groundwater contamination risk using a L-Matrix system approach. The L-Matrix in this case is a cartesian diagram where the XX-axis represents aquifer vulnerability (0≤V≤1) determined by the well-known DRASTIC model, and the YY-axis represents the potential hazardousness (0≤H≤1) of an activity (infrastructural development, industrial activities, livestock and agriculture) measured by a European Commission approach. The diagram is divided into four regions, the boundaries of which are set to V = 0.5 and H = 0.5. Watersheds are represented in this diagram considering their V and H indices, and assigned a potential contamination risk if groundwater sites located within their limits show contaminant concentrations above legal limits for a given use. Depending on the region the watershed falls in the L-Matrix diagram, different management or contamination prevention actions are highlighted: activity development, activity monitoring, activity planning or activity inspecting. Watersheds located in the inspecting region and simultaneously evidencing contamination risk require immediate action, namely conditioning or even suspension of use. The method is tested in the Paraopeba River basin (Minas Gerais, Brazil), a densely industrialized basin that was recently affected by an iron-ore mine tailings dam break.•The L-Matrix diagram highlights different groundwater susceptibility realities experienced by watersheds with different combinations of aquifer vulnerability and activity hazardousness, namely possibility for potential expansion of new hazardous activities but also the necessity to periodically inspect and eventually condition or suspend others.•The L-Matrix diagram is likely a better approach to implement contamination prevention measures in watersheds, than the integrated contamination risk index used by most methods.

16.
Sci Total Environ ; 834: 155285, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447180

RESUMO

The rupture of mine-tailings dams can severely contaminate rivers, because released tailings can interact with water for years keeping contaminant concentrations high. The general purpose of this study was to examine the rupture of B1 tailings dam in Ferro-Carvão stream (municipality of Brumadinho, state of Minas Gerais, Brazil), which occurred in 25 January 2019 and contaminated the main water course (Paraopeba River) with 2.8 Mm3 of metal-rich tailings. The specific purpose was to assess the percentage of non-conforming concentrations following the event, considering the Normative Deliberation COPAM/CERH-MG no. 1. The results showed non-conforming aluminum, iron, manganese, lead, phosphorus and turbidity concentrations, clearly above pre-rupture averages, especially in the rainy period. The catastrophe triggered the suspension of Paraopeba River as drinking water source to the Metropolitan Region of Belo Horizonte (BHMR; 6 million people). Since then, the supply to the BHMR became an everyday challenge to water management authorities, because the Paraopeba source represented a 30% share. Mitigation measures are therefore urgently needed. As complementary objective to this study, we aimed to verify the possibility to restore drinking water supply through conventional treatment. The treatability of Paraopeba River water was assessed by the Raw Water Quality Index considering the rainy and dry periods in separate. The results suggested the possibility to lift up the suspension in the dry period, improving the regional water security. Considering the huge dataset on which this study is standing, our results are generalizable to similar events with sparser information.


Assuntos
Água Potável , Poluentes Químicos da Água , Brasil , Monitoramento Ambiental , Humanos , Rios , Poluentes Químicos da Água/análise , Abastecimento de Água
17.
Sci Total Environ ; 851(Pt 1): 158248, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36028023

RESUMO

The present study aimed to investigate the rupture of B1 tailings dam of Córrego do Feijão mine, which drastically affected the region of Brumadinho (Minas Gerais, Brazil). The contamination of water resources reached 155.3 km from the dam site. In the river channel, high concentrations of Mn, Al, As and Fe were detected and correlated to the spillage of the tailings in the river. The presence of the tailings also affected the chlorophyll-a content in the water, as well as the reflectance of riparian forests. With the increase of metal(oid) concentrations above permitted levels, water management authorities suspended the use of Paraopeba River as resource in the impacted areas, namely the drinking water supply to the Metropolitan region of Belo Horizonte. This study aimed to evaluate possible links between tailings distribution, river water quality, and environmental degradation, which worked as latent variables in partial least squares regression models. The latent variables were represented by numerous physical and chemical parameters of water and sediment, measured four times in 22 locations during the rainy season of 2019, in addition to stream flow and to NDVI evaluated in satellite images processed daily. The modeling results suggested a relationship between river flow turbulence and increased arsenic release from sand fractions, as well as desorption of Mn from metal oxides, both representing causes of water quality reduction. They also revealed increasing iron concentrations affecting the forest NDVI (greening), which was interpreted as environmental degradation. The increase of chlorophyll-a concentrations (related with turbidity decreases), as well as the increase of river flows (responsible for dilution effects), seemed to work out as attenuators of degradation. Although applied to a specific site, our modeling approach can be transposed to equivalent dam failures and climate contexts, helping water resource management authorities to decide upon appropriate recovery solutions.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Arsênio/análise , Brasil , Clorofila , Monitoramento Ambiental , Ferro , Análise dos Mínimos Quadrados , Rios/química , Areia , Estações do Ano , Poluentes Químicos da Água/análise
18.
Environ Pollut ; 306: 119341, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35469926

RESUMO

This study investigated the collapse of B1 mine-tailings dam that occurred in 25 January 2019 and severely affected the Brumadinho region (Minas Gerais state, Brazil) socially, economically and environmentally. As regards water resources, the event impacted the Paraopeba River in the first 155.3 km counted from the dam site, meaning nearly half the main water course downstream of B1. In the impacted sector, high concentrations of tailings-related Al, Fe, Mn, P in river sediment-tailings mixtures and water were detected, as well as changes to the reflectance of riparian forests. In the river water, the metal concentrations raised significantly above safe levels. For caution, the water management authorities declared immediate suspension of Paraopeba River as drinking water source to the Metropolitan Region of Belo Horizonte (6 million people), irrespective of representing nearly 30% of all supply. In this study, the main purpose was to assess potential links between tailings distribution, river water composition and reflectance of forest vegetation, which worked out as latent variables in regression models. The latent variables were represented by numerous physical and chemical parameters, measured 4 times in 22 sites during the dry period of 2019. The modeling results suggested the release of aluminum and phosphorus from sand fractions in the mine tailings as major cause of water contamination. The NDVI changes were interpreted as environmental deterioration. Changes in redox potential may have raised manganese concentrations in surface water further affecting the forest NDVI. Distance from the B1 dam and dissolved calcium appear to attenuate deterioration. Overall, the regressions allowed robust prognoses of environmental deterioration in the Paraopeba River under low flow conditions. More importantly, they can be transposed to similar dam ruptures helping environmental authorities to decide upon measures that can bring the affected rivers to pre-rupture conditions.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Brasil , Humanos , Análise dos Mínimos Quadrados , Água , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 776: 146019, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33652307

RESUMO

The inadequate management of soils and the absence of conservation practices favor the degradation of pastures and can trigger adverse environmental alterations and damage under the terms of Brazilian Federal Law no. 6.938/1981. Based on this premise, this study aimed to estimate soil losses caused by water erosion in pasture areas using the brightness index (BI) from the annual series of Landsat 8 images in different geological formations. A specifically prepared Google Earth Engine (GEE) script automatically extracted the BI from the images. The study occurred in the Environmental Protection Area (EPA) of Uberaba River basin (Minas Gerais, Brazil). To accomplish the goal, 180 digital 500-wide random buffers were selected from 3 geologic types (60 points per type), and then analyzed for zonal statistics of USLE (Universal Soil Loss Equation) soil loss and BI in a Geographic Information System. The regression models BI versus USLE soil loss allowed estimating BI soil losses over the pastures of EPA. The model fittings were remarkable. The validation of soil loss maps in the EPA occurred in pasture phytophysiognomies through the probing of penetration resistance in 37 randomly selected locations. The results were satisfactory, mostly those based on the BI. The BI losses increased for greater resistances. Amplified losses also occurred in regions exposed to environmental land use conflicts (actual uses that deviate from land capability or natural use). Overall, the BI approach proved efficient to accurately track soil losses and pasture degradation over large areas, with the advantage of standing on a single parameter easily accessed through remote sensed data. From an environmental standpoint, this is an important result, because the accurate diagnosis and prognosis of degraded pastures is paramount to implement mitigation measures following the "polluter pays principle", even more in Brazil where the areas occupied by degraded pastures are enormous.

20.
Sci Total Environ ; 697: 134081, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31476490

RESUMO

Cattle grazing is a major source of income across the globe, and therefore conservation of pastures is vital to society. Pasture conservation requires the full understanding of factors contributing to their degradation, which is facilitated through panoramic analyses capable to handle all factors and capture their relationships at once. In this study, Partial Least Squares - Path Modeling (PLS-PM) was used to accomplish that task. The study area was the Environmental Protection Area of Uberaba River Basin (525 km2), located in the state of Minas Gerais, Brazil, and extensively used for livestock pasturing (51%). The selected (15) contributing factors comprised soil characteristics (e.g., organic matter, phosphorus content), runoff indicators (e.g., percentage of sand and clay in the soil), environmental land use conflicts (deviations of actual from natural uses), stream water quality parameters (e.g., oxidation-reduction potential-ORP, turbidity), and pasture conservation indicators (extent of degraded pasture within a pre-defined buffer). These measured variables were assembled into 5 conceptual (latent) variables to form the PLS-PM model, namely Groundcover, Pasture Conservation, Surface Runoff, Environmental Land Use Conflicts and Water Quality. The results elected Groundcover as prominent contributor to Pasture Conservation, because of its largest regression (path) coefficient (ß = 0.984). The most influent measured variable was organic matter. Surface Runoff (ß = -0.108) and Environmental Land Use Conflicts (ß = -0.135) contribute to pasture degradation. The role of conflicts is, however, limited to predefined areas where the deviations of actual from natural uses are more expressive. Pasture Conservation contributes unequivocally to improved Water Quality (ß = 0.800), expressed as high ORP. The PLS-PM model was free from multi-collinearity problems and model fits (R2) were high. This gives us confidence to implement conservation measures and improved management techniques based on the PLS-PM results, and to transpose the model to other areas requiring pasture quality improvements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA