Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 64(4): 760-773, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27818145

RESUMO

Skeletal muscle is a dynamic organ, characterized by an incredible ability to rapidly increase its rate of energy consumption to sustain activity. Muscle mitochondria provide most of the ATP required for contraction via oxidative phosphorylation. Here we found that skeletal muscle mitochondria express a unique MCU complex containing an alternative splice isoform of MICU1, MICU1.1, characterized by the addition of a micro-exon that is sufficient to greatly modify the properties of the MCU. Indeed, MICU1.1 binds Ca2+ one order of magnitude more efficiently than MICU1 and, when heterodimerized with MICU2, activates MCU current at lower Ca2+ concentrations than MICU1-MICU2 heterodimers. In skeletal muscle in vivo, MICU1.1 is required for sustained mitochondrial Ca2+ uptake and ATP production. These results highlight a novel mechanism of the molecular plasticity of the MCU Ca2+ uptake machinery that allows skeletal muscle mitochondria to be highly responsive to sarcoplasmic [Ca2+] responses.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Músculo Esquelético/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/metabolismo , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Transporte de Íons , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Especificidade de Órgãos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417297

RESUMO

Two independent structures of the proton-pumping, respiratory cytochrome bo3 ubiquinol oxidase (cyt bo3 ) have been determined by cryogenic electron microscopy (cryo-EM) in styrene-maleic acid (SMA) copolymer nanodiscs and in membrane scaffold protein (MSP) nanodiscs to 2.55- and 2.19-Å resolution, respectively. The structures include the metal redox centers (heme b, heme o3 , and CuB), the redox-active cross-linked histidine-tyrosine cofactor, and the internal water molecules in the proton-conducting D channel. Each structure also contains one equivalent of ubiquinone-8 (UQ8) in the substrate binding site as well as several phospholipid molecules. The isoprene side chain of UQ8 is clamped within a hydrophobic groove in subunit I by transmembrane helix TM0, which is only present in quinol oxidases and not in the closely related cytochrome c oxidases. Both structures show carbonyl O1 of the UQ8 headgroup hydrogen bonded to D75I and R71I In both structures, residue H98I occupies two conformations. In conformation 1, H98I forms a hydrogen bond with carbonyl O4 of the UQ8 headgroup, but in conformation 2, the imidazole side chain of H98I has flipped to form a hydrogen bond with E14I at the N-terminal end of TM0. We propose that H98I dynamics facilitate proton transfer from ubiquinol to the periplasmic aqueous phase during oxidation of the substrate. Computational studies show that TM0 creates a channel, allowing access of water to the ubiquinol headgroup and to H98I.


Assuntos
Grupo dos Citocromos b/química , Grupo dos Citocromos b/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Heme/metabolismo , Fosfolipídeos/metabolismo , Bombas de Próton , Ubiquinona/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Heme/química , Oxirredução , Conformação Proteica
3.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916296

RESUMO

The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Receptores de Detecção de Cálcio/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Receptores de Detecção de Cálcio/genética , Transdução de Sinais
4.
Cell Microbiol ; 21(5): e13006, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30646431

RESUMO

Helicobacter pylori (HP) is a Gram-negative bacterium that chronically infects the stomach of more than 50% of human population and represents a major cause of gastric cancer, gastric lymphoma, gastric autoimmunity, and peptic ulcer. It still remains to be elucidated, which HP virulence factors are important in the development of gastric disorders. Here, we analysed the role of the HP protein HP1454 in the host-pathogen interaction. We found that a significant proportion of T cells isolated from HP patients with chronic gastritis and gastric adenocarcinoma proliferated in response to HP1454. Moreover, we demonstrated in vivo that HP1454 protein drives Th1/Th17 inflammatory responses. We further analysed the in vitro response of human T cells exposed either to an HP wild-type strain or to a strain with a deletion of the hp1454 gene, and we revealed that HP1454 triggers the T-cell antigen receptor-dependent signalling and lymphocyte proliferation, as well as the CXCL12-dependent cell adhesion and migration. Our study findings prove that HP1454 is a crucial bacterial factor that exerts its proinflammatory activity by directly modulating the T-cell response. The relevance of these results can be appreciated by considering that compelling evidence suggest that chronic gastric inflammation, a condition that paves the way to HP-associated diseases, is dependent on T cells.


Assuntos
Adenocarcinoma/imunologia , Gastrite/imunologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/metabolismo , Lipoproteínas/imunologia , Neoplasias Gástricas/imunologia , Linfócitos T/imunologia , Adenocarcinoma/microbiologia , Idoso , Adesão Celular/imunologia , Diferenciação Celular/imunologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Movimento Celular/imunologia , Feminino , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/ultraestrutura , Gastrite/microbiologia , Regulação da Expressão Gênica/imunologia , Helicobacter pylori/genética , Helicobacter pylori/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Neoplasias Gástricas/microbiologia , Células Th1/imunologia , Células Th17/imunologia
5.
Adv Exp Med Biol ; 1131: 719-746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646532

RESUMO

It is generally accepted that interorganellar contacts are central to the control of cellular physiology. Virtually, any intracellular organelle can come into proximity with each other and, by establishing physical protein-mediated contacts within a selected fraction of the membrane surface, novel specific functions are acquired. Endoplasmic reticulum (ER) contacts with mitochondria are among the best studied and have a major role in Ca2+ and lipid transfer, signaling, and membrane dynamics.Their functional (and structural) diversity, their dynamic nature as well as the growing number of new players involved in the tethering concurred to make their monitoring difficult especially in living cells. This review focuses on the most established examples of tethers/modulators of the ER-mitochondria interface and on the roles of these contacts in health and disease by specifically dissecting how Ca2+ transfer occurs and how mishandling eventually leads to disease. Additional functions of the ER-mitochondria interface and an overview of the currently available methods to measure/quantify the ER-mitochondria interface will also be discussed.


Assuntos
Cálcio , Retículo Endoplasmático , Mitocôndrias , Doenças Neurodegenerativas , Cálcio/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Transdução de Sinais
6.
Neurobiol Dis ; 115: 157-166, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29655659

RESUMO

The fine regulation of intracellular calcium is fundamental for all eukaryotic cells. In neurons, Ca2+ oscillations govern the synaptic development, the release of neurotransmitters and the expression of several genes. Alterations of Ca2+ homeostasis were found to play a pivotal role in neurodegenerative progression. The maintenance of proper Ca2+ signaling in neurons demands the continuous activity of Ca2+ pumps and exchangers to guarantee physiological cytosolic concentration of the cation. The plasma membrane Ca2+ATPases (PMCA pumps) play a key role in the regulation of Ca2+ handling in selected sub-plasma membrane microdomains. Among the four basic PMCA pump isoforms existing in mammals, isoforms 2 and 3 are particularly enriched in the nervous system. In humans, genetic mutations in the PMCA2 gene in association with cadherin 23 mutations have been linked to hearing loss phenotypes, while those occurring in the PMCA3 gene were associated with X-linked congenital cerebellar ataxias. Here we describe a novel missense mutation (V1143F) in the calmodulin binding domain (CaM-BD) of the PMCA2 protein. The mutant pump was present in a patient showing congenital cerebellar ataxia but no overt signs of deafness, in line with the absence of mutations in the cadherin 23 gene. Biochemical and molecular dynamics studies on the mutated PMCA2 have revealed that the V1143F substitution alters the binding of calmodulin to the CaM-BD leading to impaired Ca2+ ejection.


Assuntos
Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/genética , Mutação/genética , Neurônios/patologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Adulto , Sinalização do Cálcio/fisiologia , Calmodulina/metabolismo , Ataxia Cerebelar/metabolismo , Humanos , Masculino , Neurônios/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Ligação Proteica/fisiologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína
7.
J Struct Biol ; 197(3): 330-339, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28057518

RESUMO

Four cellular retinol-binding protein (CRBP) types (CRBP1,2,3,4) are encoded in the human genome. Here, we report on X-ray analyses of human apo- and holo-CRBP1, showing nearly identical structures, at variance with the results of a recent study on the same proteins containing a His-Tag, which appears to be responsible for a destabilizing effect on the apoprotein. The analysis of crystallographic B-factors for our structures indicates that the putative portal region, in particular α-helix-II, along with Arg58 and the E-F loop, is the most flexible part of both apo- and holoprotein, consistent with its role in ligand uptake and release. Fluorometric titrations of wild type and mutant forms of apo-CRBP1, coupled with X-ray analyses, provided insight into structural and molecular determinants for the interaction of retinol with CRBP1. An approximately stoichiometric binding of retinol to wild type apo-CRBP1 (Kd∼4.5nM), significantly lower binding affinity for both mutants Q108L (Kd∼65nM) and K40L (Kd∼70nM) and very low binding affinity for the double mutant Q108L/K40L (Kd∼250nM) were determined, respectively. Overall, our data indicate that the extensive apolar interactions between the ligand and hydrophobic residues lining the retinol binding cavity are sufficient to keep it in its position bound to CRBP1. However, polar interactions of the retinol hydroxyl end group with Gln108 and Lys40 play a key role to induce a high binding affinity and specificity for the interaction.


Assuntos
Proteínas Celulares de Ligação ao Retinol/metabolismo , Vitamina A/metabolismo , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína
8.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3303-3312, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28807751

RESUMO

The neuron-restricted isoform 3 of the plasma membrane Ca2+ ATPase plays a major role in the regulation of Ca2+ homeostasis in the brain, where the precise control of Ca2+ signaling is a necessity. Several function-affecting genetic mutations in the PMCA3 pump associated to X-linked congenital cerebellar ataxias have indeed been described. Interestingly, the presence of co-occurring mutations in additional genes suggest their synergistic action in generating the neurological phenotype as digenic modulators of the role of PMCA3 in the pathologies. Here we report a novel PMCA3 mutation (G733R substitution) in the catalytic P-domain of the pump in a patient affected by non-progressive ataxia, muscular hypotonia, dysmetria and nystagmus. Biochemical studies of the pump have revealed impaired ability to control cellular Ca2+ handling both under basal and under stimulated conditions. A combined analysis by homology modeling and molecular dynamics have revealed a role for the mutated residue in maintaining the correct 3D configuration of the local structure of the pump. Mutation analysis in the patient has revealed two additional function-impairing compound heterozygous missense mutations (R123Q and G214S substitution) in phosphomannomutase 2 (PMM2), a protein that catalyzes the isomerization of mannose 6-phosphate to mannose 1-phosphate. These mutations are known to be associated with Type Ia congenital disorder of glycosylation (PMM2-CDG), the most common group of disorders of N-glycosylation. The findings highlight the association of PMCA3 mutations to cerebellar ataxia and strengthen the possibility that PMCAs act as digenic modulators in Ca2+-linked pathologies.


Assuntos
Ataxia/genética , Ataxia/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Mutação de Sentido Incorreto , Fosfotransferases (Fosfomutases)/deficiência , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cálcio/metabolismo , Pré-Escolar , Defeitos Congênitos da Glicosilação/diagnóstico por imagem , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Glicosilação , Células HeLa , Humanos , Masculino , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
9.
Biochim Biophys Acta Gen Subj ; 1861(12): 3263-3271, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28947343

RESUMO

BACKGROUND: Helicobacter pylori is a bacterium that affects about 50% of the world population and, despite being often asymptomatic, it is responsible of several gastric diseases, from gastritis to gastric cancer. The protein Lpp20 (HP1456) plays an important role in bacterium survival and host colonization, but the possibility that it might be involved in the etiology of H. pylori-related disorders is an unexplored issue. Lpp20 is a lipoprotein bound to the external membrane of the bacterium, but it is also secreted inside vesicles along with other two proteins of the same operon, i.e. HP1454 and HP1457. RESULTS: In this study we determined the crystal structure of Lpp20 and we found that it has a fold similar to a carcinogenic factor released by H. pylori, namely Tipα. We demonstrate that Lpp20 promotes cell migration and E-cadherin down-regulation in gastric cancer cells, two events recalling the epithelial-mesenchymal transition (EMT) process. Differently from Tipα, Lpp20 also stimulates cell proliferation. CONCLUSIONS: This identifies Lpp20 as a new pathogenic factor produced by H. pylori that promotes EMT and thereby the progression of cancer to the metastatic state.


Assuntos
Antígenos de Bactérias/química , Proteínas de Bactérias/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Helicobacter pylori/patogenicidade , Lipoproteínas/química , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/toxicidade , Caderinas/análise , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Lipoproteínas/imunologia , Lipoproteínas/toxicidade , Dobramento de Proteína , Estrutura Secundária de Proteína , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/patologia
10.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38854058

RESUMO

Proteins and other biomolecules form dynamic macromolecular machines that are tightly orchestrated to move, bind, and perform chemistry. Cryo-electron microscopy (cryo-EM) can access the intrinsic heterogeneity of these complexes and is therefore a key tool for understanding mechanism and function. However, 3D reconstruction of the resulting imaging data presents a challenging computational problem, especially without any starting information, a setting termed ab initio reconstruction. Here, we introduce a method, DRGN-AI, for ab initio heterogeneous cryo-EM reconstruction. With a two-step hybrid approach combining search and gradient-based optimization, DRGN-AI can reconstruct dynamic protein complexes from scratch without input poses or initial models. Using DRGN-AI, we reconstruct the compositional and conformational variability contained in a variety of benchmark datasets, process an unfiltered dataset of the DSL1/SNARE complex fully ab initio, and reveal a new "supercomplex" state of the human erythrocyte ankyrin-1 complex. With this expressive and scalable model for structure determination, we hope to unlock the full potential of cryo-EM as a high-throughput tool for structural biology and discovery.

11.
Nat Struct Mol Biol ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227719

RESUMO

Autoantibodies against neuronal membrane proteins can manifest in autoimmune encephalitis, inducing seizures, cognitive dysfunction and psychosis. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most dominant autoimmune encephalitis; however, insights into how autoantibodies recognize and alter receptor functions remain limited. Here we determined structures of human and rat NMDARs bound to three distinct patient-derived antibodies using single-particle electron cryo-microscopy. These antibodies bind different regions within the amino-terminal domain of the GluN1 subunit. Through electrophysiology, we show that all three autoantibodies acutely and directly reduced NMDAR channel functions in primary neurons. Antibodies show different stoichiometry of binding and antibody-receptor complex formation, which in one antibody, 003-102, also results in reduced synaptic localization of NMDARs. These studies demonstrate mechanisms of diverse epitope recognition and direct channel regulation of anti-NMDAR autoantibodies underlying autoimmune encephalitis.

12.
J Biol Chem ; 287(43): 36544-55, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22932901

RESUMO

[FeFe]-hydrogenases are iron-sulfur proteins characterized by a complex active site, the H-cluster, whose assembly requires three conserved maturases. HydE and HydG are radical S-adenosylmethionine enzymes that chemically modify a H-cluster precursor on HydF, a GTPase with a dual role of scaffold on which this precursor is synthesized, and carrier to transfer it to the hydrogenase. Coordinate structural and functional relationships between HydF and the two other maturases are crucial for the H-cluster assembly. However, to date only qualitative analysis of this protein network have been provided. In this work we showed that the interactions of HydE and HydG with HydF are distinct events, likely occurring in a precise functional order driven by different kinetic properties, independently of the HydF GTPase activity, which is instead involved in the dissociation of the maturases from the scaffold. We also found that HydF is able to interact with the hydrogenase only when co-expressed with the two other maturases, indicating that under these conditions it harbors per se all the structural elements needed to transfer the H-cluster precursor, thus completing the maturation process. These results open new working perspectives aimed at improving the knowledge of how these complex metalloenzymes are biosynthesized.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Hidrogenase/biossíntese , Metaloproteínas/biossíntese , Transativadores/metabolismo , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Hidrogenase/genética , Cinética , Metaloproteínas/genética , Transativadores/genética
13.
Biochim Biophys Acta ; 1817(12): 2149-57, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22985598

RESUMO

[FeFe] hydrogenases are key enzymes for bio(photo)production of molecular hydrogen, and several efforts are underway to understand how their complex active site is assembled. This site contains a [4Fe-4S]-2Fe cluster and three conserved maturation proteins are required for its biosynthesis. Among them, HydF has a double task of scaffold, in which the dinuclear iron precursor is chemically modified by the two other maturases, and carrier to transfer this unit to a hydrogenase containing a preformed [4Fe-4S]-cluster. This dual role is associated with the capability of HydF to bind and dissociate an iron-sulfur center, due to the presence of the conserved FeS-cluster binding sequence CxHx(46-53)HCxxC. The recently solved three-dimensional structure of HydF from Thermotoga neapolitana described the domain containing the three cysteines which are supposed to bind the FeS cluster, and identified the position of two conserved histidines which could provide the fourth iron ligand. The functional role of two of these cysteines in the activation of [FeFe]-hydrogenases has been confirmed by site-specific mutagenesis. On the other hand, the contribution of the three cysteines to the FeS cluster coordination sphere is still to be demonstrated. Furthermore, the potential role of the two histidines in [FeFe]-hydrogenase maturation has never been addressed, and their involvement as fourth ligand for the cluster coordination is controversial. In this work we combined site-specific mutagenesis with EPR (electron paramagnetic resonance) and HYSCORE (hyperfine sublevel correlation spectroscopy) to assign a role to these conserved residues, in both cluster coordination and hydrogenase maturation/activation, in HydF proteins from different microorganisms.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Thermotoga neapolitana/enzimologia , Sítios de Ligação , Domínio Catalítico , Hidrogênio/metabolismo , Hidrogenase/genética , Proteínas Ferro-Enxofre/genética , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Thermotoga neapolitana/crescimento & desenvolvimento
15.
Cell Death Dis ; 14(4): 297, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120609

RESUMO

Coronavirus disease (COVID-19) is a contagious respiratory disease caused by the SARS-CoV-2 virus. The clinical phenotypes are variable, ranging from spontaneous recovery to serious illness and death. On March 2020, a global COVID-19 pandemic was declared by the World Health Organization (WHO). As of February 2023, almost 670 million cases and 6,8 million deaths have been confirmed worldwide. Coronaviruses, including SARS-CoV-2, contain a single-stranded RNA genome enclosed in a viral capsid consisting of four structural proteins: the nucleocapsid (N) protein, in the ribonucleoprotein core, the spike (S) protein, the envelope (E) protein, and the membrane (M) protein, embedded in the surface envelope. In particular, the E protein is a poorly characterized viroporin with high identity amongst all the ß-coronaviruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43) and a low mutation rate. Here, we focused our attention on the study of SARS-CoV-2 E and M proteins, and we found a general perturbation of the host cell calcium (Ca2+) homeostasis and a selective rearrangement of the interorganelle contact sites. In vitro and in vivo biochemical analyses revealed that the binding of specific nanobodies to soluble regions of SARS-CoV-2 E protein reversed the observed phenotypes, suggesting that the E protein might be an important therapeutic candidate not only for vaccine development, but also for the clinical management of COVID designing drug regimens that, so far, are very limited.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias/prevenção & controle , Mitocôndrias , Homeostase
16.
J Biol Chem ; 286(51): 43944-43950, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22057316

RESUMO

[FeFe]-hydrogenases catalyze the reversible production of H2 in some bacteria and unicellular eukaryotes. These enzymes require ancillary proteins to assemble the unique active site H-cluster, a complex structure composed of a 2Fe center bridged to a [4Fe-4S] cubane. The first crystal structure of a key factor in the maturation process, HydF, has been determined at 3 Å resolution. The protein monomer present in the asymmetric unit of the crystal comprises three domains: a GTP-binding domain, a dimerization domain, and a metal cluster-binding domain, all characterized by similar folding motifs. Two monomers dimerize, giving rise to a stable dimer, held together mainly by the formation of a continuous ß-sheet comprising eight ß-strands from two monomers. Moreover, in the structure presented, two dimers aggregate to form a supramolecular organization that represents an inactivated form of the HydF maturase. The crystal structure of the latter furnishes several clues about the events necessary for cluster generation/transfer and provides an excellent model to begin elucidating the structure/function of HydF in [FeFe]-hydrogenase maturation.


Assuntos
Proteínas de Bactérias/química , GTP Fosfo-Hidrolases/química , Hidrogenase/química , Ferro/química , Animais , Proteínas de Bactérias/genética , Sítios de Ligação , Bovinos , Cristalografia por Raios X/métodos , Dimerização , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/química , Proteínas Ferro-Enxofre/química , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Secundária de Proteína , Espectrofotometria Ultravioleta/métodos , Thermotoga neapolitana/metabolismo
17.
Front Physiol ; 13: 998176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225302

RESUMO

Tetratricopeptide repeat-containing Rab8b-interacting (TRIP8b) protein is a brain-specific subunit of Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels, a class of voltage-gated channels modulated by cyclic nucleotides. While the interaction between TRIP8b and the cytosolic C terminus of the channel has been structurally described, the HCN:TRIP8b stoichiometry is less characterized. We employed single molecule mass photometry (MP) to image HCN4 particles purified in complex with TRIP8b. Our data show that four TRIP8b subunits are bound to the tetrameric HCN4 particle, confirming a 1:1 stoichiometry.

18.
Nat Struct Mol Biol ; 29(7): 706-718, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35835865

RESUMO

The stability and shape of the erythrocyte membrane is provided by the ankyrin-1 complex, but how it tethers the spectrin-actin cytoskeleton to the lipid bilayer and the nature of its association with the band 3 anion exchanger and the Rhesus glycoproteins remains unknown. Here we present structures of ankyrin-1 complexes purified from human erythrocytes. We reveal the architecture of a core complex of ankyrin-1, the Rhesus proteins RhAG and RhCE, the band 3 anion exchanger, protein 4.2, glycophorin A and glycophorin B. The distinct T-shaped conformation of membrane-bound ankyrin-1 facilitates recognition of RhCE and, unexpectedly, the water channel aquaporin-1. Together, our results uncover the molecular details of ankyrin-1 association with the erythrocyte membrane, and illustrate the mechanism of ankyrin-mediated membrane protein clustering.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito , Anquirinas , Proteína 1 de Troca de Ânion do Eritrócito/análise , Proteína 1 de Troca de Ânion do Eritrócito/química , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Anquirinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Humanos , Espectrina
19.
Cell Death Dis ; 13(10): 855, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207321

RESUMO

Calcium concentration must be finely tuned in all eukaryotic cells to ensure the correct performance of its signalling function. Neuronal activity is exquisitely dependent on the control of Ca2+ homeostasis: its alterations ultimately play a pivotal role in the origin and progression of many neurodegenerative processes. A complex toolkit of Ca2+ pumps and exchangers maintains the fluctuation of cytosolic Ca2+ concentration within the appropriate threshold. Two ubiquitous (isoforms 1 and 4) and two neuronally enriched (isoforms 2 and 3) of the plasma membrane Ca2+ATPase (PMCA pump) selectively regulate cytosolic Ca2+ transients by shaping the sub-plasma membrane (PM) microdomains. In humans, genetic mutations in ATP2B1, ATP2B2 and ATP2B3 gene have been linked with hearing loss, cerebellar ataxia and global neurodevelopmental delay: all of them were found to impair pump activity. Here we report three additional mutations in ATP2B3 gene corresponding to E1081Q, R1133Q and R696H amino acids substitution, respectively. Among them, the novel missense mutation (E1081Q) immediately upstream the C-terminal calmodulin-binding domain (CaM-BD) of the PMCA3 protein was present in two patients originating from two distinct families. Our biochemical and molecular studies on PMCA3 E1081Q mutant have revealed a splicing variant-dependent effect of the mutation in shaping the sub-PM [Ca2+]. The E1081Q substitution in the full-length b variant abolished the capacity of the pump to reduce [Ca2+] in the sub-PM microdomain (in line with the previously described ataxia-related PMCA mutations negatively affecting Ca2+ pumping activity), while, surprisingly, its introduction in the truncated a variant selectively increased Ca2+ extrusion activity in the sub-PM Ca2+ microdomains. These results highlight the importance to set a precise threshold of [Ca2+] by fine-tuning the sub-PM microdomains and the different contribution of the PMCA splice variants in this regulation.


Assuntos
Ataxia Cerebelar , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Aminoácidos , Ataxia/genética , Ataxia/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Membrana Celular/metabolismo , Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Humanos , Mutação/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
20.
Biochem Biophys Res Commun ; 405(4): 678-83, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21284939

RESUMO

[FeFe]-hydrogenases have been claimed as the most promising catalysts of hydrogen bioproduction and several efforts have been accomplished to express and purify them. However, previous attemps to obtain a functional recombinant [FeFe]-hydrogenase in heterologous systems such as Escherichia coli failed due to the lack of the specific maturation proteins driving the assembly of its complex active site. The unique exception is that of [FeFe]-hydrogenase from Clostridium pasteurianum that has been expressed in active form in the cyanobacterium Synechococcus PCC 7942, which holds a bidirectional [NiFe]-hydrogenase with a well characterized maturation system, suggesting that the latter is flexible enough to drive the synthesis of a [FeFe]-enzyme. However, the capability of cyanobacteria to correctly fold a [FeFe]-hydrogenase in the absence of its auxiliary maturation proteins is a debated question. In this work, we expressed the [FeFe]-hydrogenase from Chlamydomonas reinhardtii as an active enzyme in the cyanobacterium Synechocystis sp. PCC 6803. Our results, using a different experimental system, confirm that cyanobacteria are able to express a functional [FeFe]-hydrogenase even in the absence of additional chaperones.


Assuntos
Clostridium/enzimologia , Hidrogenase/biossíntese , Proteínas Ferro-Enxofre/biossíntese , Proteínas Recombinantes/biossíntese , Synechocystis/enzimologia , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Mutagênese Sítio-Dirigida , Plasmídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA