Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260400

RESUMO

Understanding the potential of nanomaterials (NMs) to cross the blood-brain barrier (BBB), as a function of their physicochemical properties and subsequent behavior, fate, and adverse effect beyond that point, is vital for evaluating the neurological effects arising from their unintentional entry into the brain, which is yet to be fully explored. This is not only due to the complex nature of the brain but also the existing analytical limitations for characterization and quantification of NMs in the complex brain environment. By using a fit-for-purpose analytical workflow and an in vitro BBB model, we show that the physiochemical properties of metallic NMs influence their biotransformation in biological matrices, which in turn modulates the transport form, efficiency, amounts, and pathways of NMs through the BBB and, consequently, their neurotoxicity. The data presented here will support in silico modeling and prediction of the neurotoxicity of NMs and facilitate the tailored design of safe NMs.


Assuntos
Barreira Hematoencefálica/metabolismo , Metais/química , Nanoestruturas/química , Astrócitos/metabolismo , Biotransformação , Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Exocitose , Humanos , Microvasos/citologia , Modelos Biológicos , Permeabilidade , Transcitose
2.
Environ Microbiol ; 24(2): 905-918, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34904333

RESUMO

Whether the antibacterial properties of silver nanoparticles (AgNPs) are simply due to the release of silver ions (Ag+ ) or, additionally, nanoparticle-specific effects, is not clear. We used experimental evolution of the model environmental bacterium Pseudomonas putida to ask whether bacteria respond differently to Ag+ or AgNP treatment. We pre-evolved five cultures of strain KT2440 for 70 days without Ag to reduce confounding adaptations before dividing the fittest pre-evolved culture into five cultures each, evolving in the presence of low concentrations of Ag+ , well-defined AgNPs or Ag-free controls for a further 75 days. The mutations in the Ag+ or AgNP evolved populations displayed different patterns that were statistically significant. The non-synonymous mutations in AgNP-treated populations were mostly associated with cell surface proteins, including cytoskeletal membrane protein (FtsZ), membrane sensor and regulator (EnvZ and GacS) and periplasmic protein (PP_2758). In contrast, Ag+ treatment was selected for mutations linked to cytoplasmic proteins, including metal ion transporter (TauB) and those with metal-binding domains (ThiL and PP_2397). These results suggest the existence of AgNP-specific effects, either caused by sustained delivery of Ag+ from AgNP dissolution, more proximate delivery from cell-surface bound AgNPs, or by direct AgNP action on the cell's outer membrane.


Assuntos
Nanopartículas Metálicas , Pseudomonas putida , Antibacterianos/química , Antibacterianos/farmacologia , Íons , Nanopartículas Metálicas/química , Pseudomonas putida/genética , Prata/farmacologia
3.
Environ Sci Technol ; 56(22): 15584-15593, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36255450

RESUMO

Finding and quantifying engineered nanomaterials (ENMs) in soil are challenging because of the abundance of natural nanomaterials (NNMs) with the same elemental composition, for example, TiO2. Isotopically enriched ENMs may be distinguished from NNMs with the same elemental composition using single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOF-MS) to measure multiple isotopes simultaneously within each ENM and NNM in soil, but the minimum isotope enrichment needed for detection of ENMs in soil is not known. Here, we determined the isotope enrichment needed for 47Ti-enriched TiO2 ENMs to be detectable in soil and assessed the effects of weathering on those requirements for less soluble TiO2 and more soluble CuO ENMs. The isotope-enriched ENMs were dosed into two different soils and were extracted and measured by spICP-TOF-MS after 1, 7, and 30 days. Isotope-enriched ENMs were recovered and detected for all three time points. The 47Ti-enriched TiO2 ENMs were detectable in Lufa 2.2 soil at a nominal dosed concentration of 10 mg-TiO2 kg-1 which is an environmentally relevant concentration in biosolid-amended soils. For distinguishing an ∼70 nm diameter TiO2 ENM from TiO2 NNMs in Lufa 2.2 soil, an ∼10 wt % 47Ti isotope-enrichment was required, and this enrichment requirement increases as the particle size decreases. This study is the first to evaluate the tracking ability of isotope-enriched ENMs at an individual particle level in soil and provides guidance on the isotope enrichment requirements for quantification of ENMs made from Earth-abundant elements in soils.


Assuntos
Nanoestruturas , Solo , Solo/química , Titânio , Espectrometria de Massas
4.
Environ Sci Technol ; 56(22): 15661-15671, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326287

RESUMO

The smallest fraction of plastic pollution, submicron plastics (SMPs <1 µm) are expected to be ubiquitous in the environment. No information is available about SMPs in peatlands, which have a key role in sequestering carbon in terrestrial ecosystems. It is unknown how these plastic particles might behave and interact with (micro)organisms in these ecosystems. Here, we show that the chemical composition of polystyrene (PS) and poly(vinyl chloride) (PVC)-SMPs influenced their adsorption to peat. Consequently, this influenced the accumualtion of SMPs by Sphagnum moss and the composition and diversity of the microbial communities in peatland. Natural organic matter (NOM), which adsorbs from the surrounding water to the surface of SMPs, decreased the adsorption of the particles to peat and their accumulation by Sphagnum moss. However, the presence of NOM on SMPs significantly altered the bacterial community structure compared to SMPs without NOM. Our findings show that peatland ecosystems can potentially adsorb plastic particles. This can not only impact mosses themselves but also change the local microbial communities.


Assuntos
Microbiota , Sphagnopsida , Sphagnopsida/química , Sphagnopsida/microbiologia , Solo/química , Adsorção , Plásticos , Bactérias
5.
Platelets ; 33(4): 632-639, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34904525

RESUMO

Platelets and their subcellular components (e.g., dense granules) are essential components in hemostasis. Understanding their chemical heterogeneities at the sub-micrometer scale, particularly their activation during hemostasis and production of platelet-derived extracellular vesicles, may provide important insights into their mechanisms; however, this has rarely been investigated, mainly owing to the lack of appropriate chemical characterization tools at nanometer scale. Here, the use of scanning transmission X-ray microscopy (STXM) combined with X-ray absorption near edge structure (XANES) to characterize human platelets and their subcellular components at the carbon K-edge and calcium L2,3-edge, is reported. STXM images can identify not only the spatial distribution of subcellular components in human platelets, such as dense granules (DGs) with sizes of ~200 nm, but also their granule-to-granule chemical heterogeneities on the sub-micrometer scale, based on their XANES spectra. The calcium distribution map as well as the principal component analysis of the STXM image stacks clearly identified the numbers and locations of the calcium-rich DGs within human platelets. Deconvolution of the carbon K-edge XANES spectra, extracted from various locations in the platelets, showed that amide carbonyl and carboxylic acid functional groups were mainly found in the cytoplasm, while ketone-phenol-nitrile-imine, aliphatic, and carbonate functional groups were dominant in the platelet DGs. These observations suggest that platelet DGs are most likely composed of calcium polyphosphate associated with adenosine triphosphate (ATP) and adenosine diphosphate (ADP), with significant granule-to-granule variations in their compositions, while the cytoplasm regions of platelets contain significant amounts of proteins.


Assuntos
Plaquetas , Cálcio , Plaquetas/metabolismo , Cálcio/metabolismo , Carbono/metabolismo , Carbono/farmacologia , Grânulos Citoplasmáticos/metabolismo , Humanos , Microscopia , Raios X
6.
Molecules ; 27(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35164246

RESUMO

Whereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by automation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been developed, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air-liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data.

8.
Environ Sci Technol ; 55(13): 8654-8664, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34156836

RESUMO

This study compared the impact and uptake of root-administered CeO2 nanoparticles (NPs) in rice growing under flooded and aerobic soil conditions, which are two water regimes commonly used for rice cultivation. CeO2 NPs at 100 mg/kg improved photosynthesis and plant growth by reducing the oxidative damage and enhancing plant tolerance to stress, while a higher concentration (500 mg/kg) of CeO2 NPs negatively affected plant growth. More significant effects were observed under the flooded condition than under the aerobic condition. CeO2 NPs of 100 and 500 mg/kg resulted in 78% and 70% higher accumulation of Ce in shoots under the flooded condition compared to the aerobic condition. CeO2 NPs partially transformed to Ce(III) species in soils and plants under both conditions. A higher extent of transformation under the flooded condition, which was partly attributed to the lower soil pH and redox potential under the flooded condition, leads to higher plant uptake of Ce. A higher extent of transformation in rhizosphere soil was observed. A higher plant transpiration rate (TR) under flooded conditions resulted in a higher accumulation of CeO2 species in shoots. This study, for the first time, reported that water regimes influenced the biotransformation of CeO2 NPs and their uptake and impact in rice plants.


Assuntos
Cério , Nanopartículas , Oryza , Poluentes do Solo , Cério/toxicidade , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
9.
Environ Sci Technol ; 55(13): 8721-8729, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110809

RESUMO

Reliable chemical identification of specific polymers in environmental samples represents a major challenge in plastic research, especially with the wide range of commercial polymers available, along with variable additive mixtures. Thermogravimetric analysis-Fourier transform infrared-gas chromatography-mass spectrometry (TGA-FTIR-GC-MS) offers a unique characterization platform that provides both physical and chemical properties of the analyzed polymers. This study presents a library of 11 polymers generated using virgin plastics and post-consumer products. TGA inflection points and mass of remaining residues following pyrolysis, in some cases, proved to be indicative of the polymer type. FTIR analysis of the evolved gas was able to differentiate between all but polypropylene (PP) and polyethylene (PE). Finally, GC-MS was able to differentiate between the unique chemical fingerprints of all but one polymer in the library. This library was then used to characterize real environmental samples of mesoplastics collected from beaches in the U.K. and South Africa. Unambiguous identification of the polymer types was achieved, with PE being the most frequently detected polymer and with South African samples indicating variations that potentially resulted from aging and weathering.


Assuntos
Plásticos , Polímeros , Análise de Fourier , Cromatografia Gasosa-Espectrometria de Massas , África do Sul , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Ecotoxicol Environ Saf ; 218: 112280, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33962275

RESUMO

Association of nanoparticles (NPs) with algae likely plays a critical role in their transfer in aquatic food chains. Although our understanding of the ecotoxicity and fate of NPs in the environment is increasing, it is still unclear how the physicochemical properties of NPs influence their interaction with algae at cellular levels and how this is reflected at a population level. This is due to the limitation in the existing analytical techniques to quantify the association of NPs with cells. To fill this data gap, we applied the novel technique of single-cell inductively coupled plasma mass spectrometry to quantify the cellular association of gold (Au)-NPs with algal cells (Pseudokirchneriella subcapitata) as a function of particle size, shape (spherical 10 nm, spherical 60 nm, spherical 100 nm, rod-shaped 10 × 40 nm, and rod-shaped 50 × 100 nm), and surface chemistry [citrate and natural organic matter (NOM) coating] on a cell-by-cell basis. The association of Au-NPs with algal cells was found to be a random probability following a so-called stochastic process; after 72 h of exposure, less than 45% of the cell population accumulated NPs on their surface. The number of Au-NPs per cell was found to be heterogeneously distributed as some cells were associated with a significantly higher number (e.g. up to 600 spherical 10 nm particles per cell) of Au-NPs than other cells present in the medium. The presence of NOM on the surface of the particles decreased the percentage of cells containing NPs except for the spherical 60 nm Au-NPs. We conclude that some algae within a population can accumulate NPs on their surface and this accumulation is influenced by the size, shape, and surface chemistry of NPs. It is important to understand how NPs may enter aquatic food chains to assess the possible risk.

11.
Molecules ; 26(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500752

RESUMO

ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations.

12.
Small ; 16(21): e1906588, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32174008

RESUMO

Zeta potential is one of the most critical properties of nanomaterials (NMs) which provides an estimation of the surface charge, and therefore electrostatic stability in medium and, in practical terms, influences the NM's tendency to form agglomerates and to interact with cellular membranes. This paper describes a robust and accurate read-across model to predict NM zeta potential utilizing as the input data a set of image descriptors derived from transmission electron microscopy (TEM) images of the NMs. The image descriptors are calculated using NanoXtract (http://enaloscloud.novamechanics.com/EnalosWebApps/NanoXtract/), a unique online tool that generates 18 image descriptors from the TEM images, which can then be explored by modeling to identify those most predictive of NM behavior and biological effects. NM TEM images are used to develop a model for prediction of zeta potential based on grouping of the NMs according to their nearest neighbors. The model provides interesting insights regarding the most important similarity features between NMs-in addition to core composition the main elongation emerged, which links to key drivers of NM toxicity such as aspect ratio. Both the NanoXtract image analysis tool and the validated model for zeta potential (http://enaloscloud.novamechanics.com/EnalosWebApps/ZetaPotential/) are freely available online through the Enalos Nanoinformatics platform.

13.
Small ; 16(21): e2000301, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32338428

RESUMO

Engineered nanoparticles (NPs) undergo physical, chemical, and biological transformation after environmental release, resulting in different properties of the "aged" versus "pristine" forms. While many studies have investigated the ecotoxicological effects of silver (Ag) NPs, the majority focus on "pristine" Ag NPs in simple exposure media, rather than investigating realistic environmental exposure scenarios with transformed NPs. Here, the effects of "pristine" and "aged" Ag NPs are systematically evaluated with different surface coatings on Daphnia magna over four generations, comparing continuous exposure versus parental only exposure to assess recovery potential for three generations. Biological endpoints including survival, growth and reproduction and genetic effects associated with Ag NP exposure are investigated. Parental exposure to "pristine" Ag NPs has an inhibitory effect on reproduction, inducing expression of antioxidant stress related genes and reducing survival. Pristine Ag NPs also induce morphological changes including tail losses and lipid accumulation associated with aging phenotypes in the heart, abdomen, and abdominal claw. These effects are epigenetic remaining two generations post-maternal exposure (F2 and F3). Exposure to identical Ag NPs (same concentrations) aged for 6 months in environmentally realistic water containing natural organic matter shows considerably reduced toxicological effects in continuously exposed generations and to the recovery generations.


Assuntos
Envelhecimento , Daphnia , Epigênese Genética , Nanopartículas Metálicas , Prata , Envelhecimento/efeitos dos fármacos , Animais , Daphnia/efeitos dos fármacos , Exposição Ambiental , Epigênese Genética/efeitos dos fármacos , Feminino , Exposição Materna , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade
14.
Environ Sci Technol ; 54(6): 3181-3190, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083855

RESUMO

The mechanism of graphene-based nanomaterial (GBM)-induced phytotoxicity and its association with the GBM physicochemical properties are not yet fully understood. The present study compared the effects of graphene oxide (GO) and reduced GO (rGO) on rice seedling growth under hydroponic conditions for 3 weeks. GO at 100 and 250 mg/L reduced shoot biomass (by 25 and 34%, respectively) and shoot elongation (by 17 and 43%, respectively) and caused oxidative damage, while rGO exhibited no overt effect except for the enhancement of the antioxidant enzyme activities, suggesting that the surface oxygen content is a critical factor affecting the biological impacts of GBMs. GO treatments (100 and 250 mg/L) enhanced the iron (Fe) translocation and caused excessive Fe accumulation in shoots (2.2 and 3.6 times higher than control), which was found to be the main reason for the oxidative damage in shoots. GO-induced acidification of the nutrient solution was the main driver for the Fe overload in plants. In addition to the antioxidant regulators, the plants triggered other pathways to defend against the Fe toxicity via downregulation of the Fe transport associated metabolites (mainly coumarins and flavonoids). Plant root exudates facilitated the reduction of toxic GO to nontoxic rGO, acting as another route for plant adaption to GO-induced phytotoxicity. This study provides new insights into the mechanism of the phytotoxicity of GBMs. It also provides implications for the agricultural application of GBM that the impacts of GBMs on the uptake of multiple nutrients in plants should be assessed simultaneously and reduced forms of GBMs are preferential to avoid toxicity.


Assuntos
Grafite , Sobrecarga de Ferro , Nanoestruturas , Oryza , Poluentes do Solo , Humanos , Concentração de Íons de Hidrogênio , Estresse Oxidativo , Raízes de Plantas , Plântula
15.
Ecotoxicol Environ Saf ; 179: 127-134, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31030055

RESUMO

The increasing production of Ag nanoparticle (AgNP) containing products has inevitably led to a growing concern about their release into the aquatic environment, along with their potential behaviour, toxicity, and bioaccumulation in marine organisms exposed to NPs released from these products. Hence, this study is focused on the effects of AgNPs in Saccostrea glomerata (rock oyster) in artificial seawater (ASW); evaluating the NP's stability, dissolution, and bioaccumulation rate. AgNPs NM300K (20 ±â€¯5 nm) in concentrations of 12.5 µgL-1 and 125 µgL-1 were used to conduct the experiments, and were compared to a blank and a positive control of 12.5 µgL-1 AgNO3. Dissolution in ASW was measured by ICP-OES and stability was assessed by TEM after 1 h and 3, 5, and 7 days of exposure. Bioaccumulation in gills and digestive glands was measured after 7 days of exposure. The higher concentration of AgNPs induced more aggregation, underwent less dissolution, and showed less bioaccumulation, while the lower concentration showed less aggregation, more dissolution and higher bioaccumulation. Five biomarkers (EROD: ethoxyresorufin-o-deethylase, DNA strand breaks, LPO: lipid peroxidation, GST: glutathione S-transferase and GR: glutathione reductase) were analysed at 0, 3, 5 and 7 days. Significant differences compared to the initial day of exposure (day 0) were reported in DNA strand breaks after 5 and 7 days of exposure, GST, from the third day of exposure, in all the Ag samples, and in some samples for LPO and GR biomarkers, while no significant induction of EROD was observed. A combined effect for each type of treatment and time of exposure was also reported for DNA strand breaks and GST biomarkers measured at the digestive glands. In general, the significant inductions measured showed the following trend: 125 µgL-1 AgNPs >12.5 µgL-1 AgNPs ∼12.5 µgL-1 AgNO3 even though bioaccumulation followed the opposite trend.


Assuntos
Nanopartículas Metálicas/toxicidade , Ostreidae/efeitos dos fármacos , Ostreidae/metabolismo , Prata/metabolismo , Prata/toxicidade , Animais , Biomarcadores/metabolismo , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Íons/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Água do Mar/química
16.
Arch Toxicol ; 92(2): 633-649, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29119250

RESUMO

Manufactured nanomaterials (MNMs) selected from a library of over 120 different MNMs with varied compositions, sizes, and surface coatings were tested by four different laboratories for toxicity by high-throughput/-content (HT/C) techniques. The selected particles comprise 14 MNMs composed of CeO2, Ag, TiO2, ZnO and SiO2 with different coatings and surface characteristics at varying concentrations. The MNMs were tested in different mammalian cell lines at concentrations between 0.5 and 250 µg/mL to link physical-chemical properties to multiple adverse effects. The cell lines are derived from relevant organs such as liver, lung, colon and the immune system. Endpoints such as viable cell count, cell membrane permeability, apoptotic cell death, mitochondrial membrane potential, lysosomal acidification and steatosis have been studied. Soluble MNMs, Ag and ZnO, were toxic in all cell types. TiO2 and SiO2 MNMs also triggered toxicity in some, but not all, cell types and the cell type-specific effects were influenced by the specific coating and surface modification. CeO2 MNMs were nearly ineffective in our test systems. Differentiated liver cells appear to be most sensitive to MNMs, Whereas most of the investigated MNMs showed no acute toxicity, it became clear that some show adverse effects dependent on the assay and cell line. Hence, it is advised that future nanosafety studies utilise a multi-parametric approach such as HT/C screening to avoid missing signs of toxicity. Furthermore, some of the cell type-specific effects should be followed up in more detail and might also provide an incentive to address potential adverse effects in vivo in the relevant organ.


Assuntos
Ensaios de Triagem em Larga Escala , Microscopia , Nanoestruturas/toxicidade , Testes de Toxicidade/métodos , Células A549 , Animais , Relação Dose-Resposta a Droga , Células HCT116 , Células Hep G2 , Humanos , Nanopartículas Metálicas/toxicidade , Camundongos , Células RAW 264.7
17.
Environ Sci Technol ; 51(11): 6063-6070, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28436657

RESUMO

Stability and temporal changes in size distributions have been observed for citrate- (cit) and polyvinylpyrrolidone- (PVP) capped silver nanoparticles (AgNPs), in the presence or absence of sulfide and natural organic matter (NOM, as humic acid), while under suboxic conditions. There were substantial differences in the influence of the two capping agents, with PVP-AgNPs showing few or no significant changes in apparent stability or particle size distribution under the conditions examined, while the apparent size distributions of citrate-capped AgNPs changed rapidly. Sulfide and humic acid each individually caused immediate increases in cit-AgNP size distributions, which were then relatively stable over 60-145 days. This may be due to sulfide bridging and cation bridging, respectively. However, in competition, it was the influence of the humic acid that dominated that of the sulfide. These observations have implications for environmental fate and toxicity of AgNP. The increased stability in the presence of even low concentrations of NOM may limit the rapidity of Ag dispersal but may also concentrate the dose received by organisms, which subsequently ingest the stabilized particles.


Assuntos
Substâncias Húmicas , Nanopartículas Metálicas , Tamanho da Partícula , Prata
19.
Environ Sci Technol ; 50(1): 412-9, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26588002

RESUMO

The environmental behavior of ZnO nanoparticles (NPs), their availability to, uptake pathways by, and biokinetics in the earthworm Lumbricus rubellus were investigated using stable isotope labeling. Zinc isotopically enriched to 99.5% in (68)Zn ((68)Zn-E) was used to prepare (68)ZnO NPs and a dissolved phase of (68)Zn for comparison. These materials enabled tracing of environmentally relevant (below background) NP additions to soil of only 5 mg (68)Zn-E kg(-1). Uptake routes were isolated by introducing earthworms with sealed and unsealed mouthparts into test soils for up to 72 h. The Zn isotope compositions of the soils, pore waters and earthworms were then determined using multiple collector inductively coupled plasma mass spectrometry. Detection and quantification of (68)Zn-E in earthworm tissue was possible after only 4 h of dermal exposure, when the uptake of (68)Zn-E had increased the total Zn tissue concentration by 0.03‰. The results demonstrate that at these realistic exposure concentrations there is no distinguishable difference between the uptake of the two forms of Zn by the earthworm L. rubellus, with the dietary pathway accounting for ∼95% of total uptake. This stands in contrast to comparable studies where high dosing levels were used and dermal uptake is dominant.


Assuntos
Marcação por Isótopo/métodos , Nanopartículas Metálicas/química , Oligoquetos/metabolismo , Isótopos de Zinco , Óxido de Zinco , Zinco , Animais , Solo/química , Zinco/química , Zinco/farmacocinética , Isótopos de Zinco/química , Isótopos de Zinco/farmacocinética , Óxido de Zinco/química , Óxido de Zinco/farmacocinética
20.
Environ Sci Technol ; 49(7): 4389-97, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25756614

RESUMO

Frameworks commonly used in trace metal ecotoxicology (e.g., biotic ligand model (BLM) and tissue residue approach (TRA)) are based on the established link between uptake, accumulation and toxicity, but similar relationships remain unverified for metal-containing nanoparticles (NPs). The present study aimed to (i) characterize the bioaccumulation dynamics of PVP-, PEG-, and citrate-AgNPs, in comparison to dissolved Ag, in Daphnia magna and Lumbriculus variegatus; and (ii) investigate whether parameters of bioavailability and accumulation predict acute toxicity. In both species, uptake rate constants for AgNPs were ∼ 2-10 times less than for dissolved Ag and showed significant rank order concordance with acute toxicity. Ag elimination by L. variegatus fitted a 1-compartment loss model, whereas elimination in D. magna was biphasic. The latter showed consistency with studies that reported daphnids ingesting NPs, whereas L. variegatus biodynamic parameters indicated that uptake and efflux were primarily determined by the bioavailability of dissolved Ag released by the AgNPs. Thus, principles of BLM and TRA frameworks are confounded by the feeding behavior of D. magna where the ingestion of AgNPs perturbs the relationship between tissue concentrations and acute toxicity, but such approaches are applicable when accumulation and acute toxicity are linked to dissolved concentrations. The uptake rate constant, as a parameter of bioavailability inclusive of all available pathways, could be a successful predictor of acute toxicity.


Assuntos
Daphnia/metabolismo , Nanopartículas Metálicas/toxicidade , Oligoquetos/metabolismo , Prata/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Disponibilidade Biológica , Ácido Cítrico/metabolismo , Ecotoxicologia , Nanopartículas , Polietilenoglicóis/metabolismo , Povidona/metabolismo , Prata/toxicidade , Nitrato de Prata/metabolismo , Nitrato de Prata/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA