Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432635

RESUMO

Both POLG and MGME1 are needed for mitochondrial DNA (mtDNA) maintenance in animal cells. POLG, the primary replicative polymerase of the mitochondria, has an exonuclease activity (3'→5') that corrects for the misincorporation of bases. MGME1 serves as an exonuclease (5'→3'), producing ligatable DNA ends. Although both have a critical role in mtDNA replication and elimination of linear fragments, these mechanisms are still not fully understood. Using digital PCR to evaluate and compare mtDNA integrity, we show that Mgme1 knock out (Mgme1 KK) tissue mtDNA is more fragmented than POLG exonuclease-deficient "Mutator" (Polg MM) or WT tissue. In addition, next generation sequencing of mutant hearts showed abundant duplications in/nearby the D-loop region and unique 100 bp duplications evenly spaced throughout the genome only in Mgme1 KK hearts. However, despite these unique mtDNA features at steady-state, we observed a similar delay in the degradation of mtDNA after an induced double strand DNA break in both Mgme1 KK and Polg MM models. Lastly, we characterized double mutant (Polg MM/Mgme1 KK) cells and show that mtDNA cannot be maintained without at least one of these enzymatic activities. We propose a model for the generation of these genomic abnormalities which suggests a role for MGME1 outside of nascent mtDNA end ligation. Our results highlight the role of MGME1 in and outside of the D-loop region during replication, support the involvement of MGME1 in dsDNA degradation, and demonstrate that POLG EXO and MGME1 can partially compensate for each other in maintaining mtDNA.


Assuntos
DNA Polimerase gama , DNA Mitocondrial , Animais , Camundongos , DNA Polimerase gama/metabolismo , DNA Polimerase gama/genética , Replicação do DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Camundongos Knockout
2.
Hum Mol Genet ; 31(17): 2876-2886, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35383839

RESUMO

Most Alzheimer's disease (AD)-associated genetic variants do not change protein coding sequence and thus likely exert their effects through regulatory mechanisms. RNA editing, the post-transcriptional modification of RNA bases, is a regulatory feature that is altered in AD patients that differs across ancestral backgrounds. Editing QTLs (edQTLs) are DNA variants that influence the level of RNA editing at a specific site. To study the relationship of DNA variants genome-wide, and particularly in AD-associated loci, with RNA editing, we performed edQTL analyses in self-reported individuals of African American (AF) or White (EU) race with corresponding global genetic ancestry averaging 82.2% African ancestry (AF) and 96.8% European global ancestry (EU) in the two groups, respectively. We used whole-genome genotyping array and RNA sequencing data from peripheral blood of 216 AD cases and 212 age-matched, cognitively intact controls. We identified 2144 edQTLs in AF and 3579 in EU, of which 1236 were found in both groups. Among these, edQTLs in linkage disequilibrium (r2 > 0.5) with AD-associated genetic variants in the SORL1, SPI1 and HLA-DRB1 loci were associated with sites that were differentially edited between AD cases and controls. While there is some shared RNA editing regulatory architecture, most edQTLs had distinct effects on the rate of RNA editing in different ancestral populations suggesting a complex architecture of RNA editing regulation. Altered RNA editing may be one possible mechanism for the functional effect of AD-associated variants and may contribute to observed differences in the genetic etiology of AD between ancestries.


Assuntos
Doença de Alzheimer , Edição de RNA , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , População Negra , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Desequilíbrio de Ligação , Proteínas de Membrana Transportadoras/genética , Locos de Características Quantitativas/genética , Edição de RNA/genética
3.
Mol Ther ; 31(6): 1775-1790, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37147804

RESUMO

Long non-coding RNAs (lncRNAs) orchestrate various biological processes and regulate the development of cardiovascular diseases. Their potential therapeutic benefit to tackle disease progression has recently been extensively explored. Our study investigates the role of lncRNA Nudix Hydrolase 6 (NUDT6) and its antisense target fibroblast growth factor 2 (FGF2) in two vascular pathologies: abdominal aortic aneurysms (AAA) and carotid artery disease. Using tissue samples from both diseases, we detected a substantial increase of NUDT6, whereas FGF2 was downregulated. Targeting Nudt6 in vivo with antisense oligonucleotides in three murine and one porcine animal model of carotid artery disease and AAA limited disease progression. Restoration of FGF2 upon Nudt6 knockdown improved vessel wall morphology and fibrous cap stability. Overexpression of NUDT6 in vitro impaired smooth muscle cell (SMC) migration, while limiting their proliferation and augmenting apoptosis. By employing RNA pulldown followed by mass spectrometry as well as RNA immunoprecipitation, we identified Cysteine and Glycine Rich Protein 1 (CSRP1) as another direct NUDT6 interaction partner, regulating cell motility and SMC differentiation. Overall, the present study identifies NUDT6 as a well-conserved antisense transcript of FGF2. NUDT6 silencing triggers SMC survival and migration and could serve as a novel RNA-based therapeutic strategy in vascular diseases.


Assuntos
Aneurisma da Aorta Abdominal , Doenças das Artérias Carótidas , RNA Longo não Codificante , Animais , Camundongos , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/terapia , Aneurisma da Aorta Abdominal/metabolismo , Apoptose/genética , Proliferação de Células/genética , Progressão da Doença , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Oligonucleotídeos Antissenso
4.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769022

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, complex multi-organ illness characterized by unexplained debilitating fatigue and post-exertional malaise (PEM), which is defined as a worsening of symptoms following even minor physical or mental exertion. Our study aimed to evaluate transcriptomic changes in ME/CFS female patients undergoing an exercise challenge intended to precipitate PEM. Our time points (baseline before exercise challenge, the point of maximal exertion, and after an exercise challenge) allowed for the exploration of the transcriptomic response to exercise and recovery in female patients with ME/CFS, as compared to healthy controls (HCs). Under maximal exertion, ME/CFS patients did not show significant changes in gene expression, while HCs demonstrated altered functional gene networks related to signaling and integral functions of their immune cells. During the recovery period (commonly during onset of PEM), female ME/CFS patients showed dysregulated immune signaling pathways and dysfunctional cellular responses to stress. The unique functional pathways identified provide a foundation for future research efforts into the disease, as well as for potential targeted treatment options.


Assuntos
Síndrome de Fadiga Crônica , Humanos , Feminino , Síndrome de Fadiga Crônica/genética , Síndrome de Fadiga Crônica/diagnóstico , Transcriptoma , Perfilação da Expressão Gênica , Exercício Físico/fisiologia , Transdução de Sinais
5.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373402

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, multi-symptom illness characterized by debilitating fatigue and post-exertional malaise (PEM). Numerous studies have reported sex differences at the epidemiological, cellular, and molecular levels between male and female ME/CFS patients. To gain further insight into these sex-dependent changes, we evaluated differential gene expression by RNA-sequencing (RNA-Seq) in 33 ME/CFS patients (20 female, 13 male) and 34 matched healthy controls (20 female and 14 male) before, during, and after an exercise challenge intended to provoke PEM. Our findings revealed that pathways related to immune-cell signaling (including IL-12) and natural killer cell cytotoxicity were activated as a result of exertion in the male ME/CFS cohort, while female ME/CFS patients did not show significant enough changes in gene expression to meet the criteria for the differential expression. Functional analysis during recovery from an exercise challenge showed that male ME/CFS patients had distinct changes in the regulation of specific cytokine signals (including IL-1ß). Meanwhile, female ME/CFS patients had significant alterations in gene networks related to cell stress, response to herpes viruses, and NF-κß signaling. The functional pathways and differentially expressed genes highlighted in this pilot project provide insight into the sex-specific pathophysiology of ME/CFS.


Assuntos
Síndrome de Fadiga Crônica , Humanos , Masculino , Feminino , Síndrome de Fadiga Crônica/genética , Síndrome de Fadiga Crônica/metabolismo , Projetos Piloto , Células Matadoras Naturais/metabolismo , Interleucina-12/metabolismo , Citocinas/metabolismo
6.
Alzheimers Dement ; 18(10): 1930-1942, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34978147

RESUMO

We previously demonstrated that in Alzheimer's disease (AD) patients, European apolipoprotein E (APOE) ε4 carriers express significantly more APOE ε4 in their brains than African AD carriers. We examined single nucleotide polymorphisms near APOE with significant frequency differences between African and European/Japanese APOE ε4 haplotypes that could contribute to this difference in expression through regulation. Two enhancer massively parallel reporter assay (MPRA) approaches were performed, supplemented with single fragment reporter assays. We used Capture C analyses to support interactions with the APOE promoter. Introns within TOMM40 showed increased enhancer activity in the European/Japanese versus African haplotypes in astrocytes and microglia. This region overlaps with APOE promoter interactions as assessed by Capture C analysis. Single variant analyses pinpoints rs2075650/rs157581, and rs59007384 as functionally different on these haplotypes. Identification of the mechanisms for differential regulatory function for APOE expression between African and European/Japanese haplotypes could lead to therapeutic targets for APOE ε4 carriers.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Alelos , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , População Negra/genética , Genótipo , Haplótipos , Polimorfismo de Nucleotídeo Único/genética
7.
J Neurochem ; 157(6): 1759-1773, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32219848

RESUMO

Ascorbic acid (vitamin C) is critical for Schwann cells to myelinate peripheral nerve axons during development and remyelination after injury. However, its exact mechanism remains elusive. Vitamin C is a dietary nutrient that was recently discovered to promote active DNA demethylation. Schwann cell myelination is characterized by global DNA demethylation in vivo and may therefore be regulated by vitamin C. We found that vitamin C induces a massive transcriptomic shift (n = 3,848 genes) in primary cultured Schwann cells while simultaneously producing a global increase in genomic 5-hydroxymethylcytosine (5hmC), a DNA demethylation intermediate which regulates transcription. Vitamin C up-regulates 10 pro-myelinating genes which exhibit elevated 5hmC content in both the promoter and gene body regions of these loci following treatment. Using a mouse model of human vitamin C metabolism, we found that maternal dietary vitamin C deficiency causes peripheral nerve hypomyelination throughout early development in resulting offspring. Additionally, dietary vitamin C intake regulates the expression of myelin-related proteins such as periaxin (PRX) and myelin basic protein (MBP) during development and remyelination after injury in mice. Taken together, these results suggest that vitamin C cooperatively promotes myelination through 1) increased DNA demethylation and transcription of pro-myelinating genes, and 2) its known role in stabilizing collagen helices to form the basal lamina that is necessary for myelination.


Assuntos
Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/metabolismo , Desmetilação do DNA/efeitos dos fármacos , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Células de Schwann/fisiologia , Animais , Ácido Ascórbico/genética , Deficiência de Ácido Ascórbico/tratamento farmacológico , Deficiência de Ácido Ascórbico/genética , Deficiência de Ácido Ascórbico/metabolismo , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas da Mielina/genética , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/genética , Ratos Endogâmicos F344 , Células de Schwann/efeitos dos fármacos , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/genética , Neuropatia Ciática/metabolismo
8.
Hum Mol Genet ; 28(18): 3053-3061, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31162550

RESUMO

Little is known about the post-transcriptional mechanisms that modulate the genetic effects in the molecular pathways underlying Alzheimer disease (AD), and even less is known about how these changes might differ across diverse populations. RNA editing, the process that alters individual bases of RNA, may contribute to AD pathogenesis due to its roles in neuronal development and immune regulation. Here, we pursued one of the first transcriptome-wide RNA editing studies in AD by examining RNA sequencing data from individuals of both African-American (AA) and non-Hispanic White (NHW) ethnicities. Whole transcriptome RNA sequencing and RNA editing analysis were performed on peripheral blood specimens from 216 AD cases (105 AA, 111 NHW) and 212 gender matched controls (105 AA, 107 NHW). 449 positions in 254 genes and 723 positions in 371 genes were differentially edited in AA and NHW, respectively. While most differentially edited sites localized to different genes in AA and NHW populations, these events converged on the same pathways across both ethnicities, especially endocytic and inflammatory response pathways. Furthermore, these differentially edited sites were preferentially predicted to disrupt miRNA binding and induce nonsynonymous coding changes in genes previously associated with AD in molecular studies, including PAFAH1B2 and HNRNPA1. These findings suggest RNA editing is an important post-transcriptional regulatory program in AD pathogenesis.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Edição de RNA , Transdução de Sinais , Alelos , Doença de Alzheimer/patologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Predisposição Genética para Doença , Genótipo , Humanos , Anotação de Sequência Molecular , Transcriptoma
9.
Am J Transplant ; 21(11): 3524-3537, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34008325

RESUMO

Mesenchymal stem cells (MSC) have been shown to be immunomodulatory, tissue regenerative, and graft promoting; however, several questions remain with regard to ideal MSC source and timing of administration. In this study, we utilized a rigorous preclinical model of allogeneic islet cell transplantation, incorporating reduced immune suppression and near to complete mismatch of major histocompatibility antigens between the diabetic cynomolgus monkey recipient and the islet donor, to evaluate both the graft promoting impact of MSC source, that is, derived from the islet recipient, the islet donor or an unrelated third party as well as the impact of timing. Co-transplant of MSC and islets on post-operative day 0, followed by additional IV MSC infusions in the first posttransplant month, resulted in prolongation of rejection free and overall islet survival and superior metabolic control for animals treated with recipient as compared to donor or third-party MSC. Immunological analyses demonstrated that infusion of MSC from either source did not prevent alloantibody formation to the islet or MSC donor; however, treatment with recipient MSC resulted in significant downregulation of memory T cells, decreased anti-donor T cell proliferation, and a trend toward increased Tregulatory:Tconventional ratios.


Assuntos
Transplante das Ilhotas Pancreáticas , Células-Tronco Mesenquimais , Aloenxertos , Animais , Macaca fascicularis , Transplante Homólogo
10.
Addict Biol ; 26(1): e12816, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31373129

RESUMO

Epigenetic enzymes oversee long-term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol-dependent rats compared with controls. Follow-up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region-specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol-dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol-dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]-sequencing) analysis showed that alcohol-induced changes in H3K27me3 were significantly enriched at genes in the IL-6 signaling pathway, consistent with the well-characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL-6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B-mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.


Assuntos
Alcoolismo/genética , Histona Desmetilases com o Domínio Jumonji/genética , Animais , Células Cultivadas , Epigênese Genética , Etanol/metabolismo , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Córtex Pré-Frontal/metabolismo , Ratos , Transdução de Sinais , Regulação para Cima
11.
Development ; 144(2): 292-304, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28096217

RESUMO

During oogenesis, hundreds of maternal RNAs are selectively localized to the animal or vegetal pole, including determinants of somatic and germline fates. Although microarray analysis has identified localized determinants, it is not comprehensive and is limited to known transcripts. Here, we utilized high-throughput RNA-sequencing analysis to comprehensively interrogate animal and vegetal pole RNAs in the fully grown Xenopus laevis oocyte. We identified 411 (198 annotated) and 27 (15 annotated) enriched mRNAs at the vegetal and animal pole, respectively. Ninety were novel mRNAs over 4-fold enriched at the vegetal pole and six were over 10-fold enriched at the animal pole. Unlike mRNAs, microRNAs were not asymmetrically distributed. Whole-mount in situ hybridization confirmed that all 17 selected mRNAs were localized. Biological function and network analysis of vegetally enriched transcripts identified protein-modifying enzymes, receptors, ligands, RNA-binding proteins, transcription factors and co-factors with five defining hubs linking 47 genes in a network. Initial functional studies of maternal vegetally localized mRNAs show that sox7 plays a novel and important role in primordial germ cell (PGC) development and that ephrinB1 (efnb1) is required for proper PGC migration. We propose potential pathways operating at the vegetal pole that highlight where future investigations might be most fruitful.


Assuntos
Movimento Celular/genética , Células Germinativas Embrionárias/fisiologia , Células Germinativas/metabolismo , RNA Mensageiro Estocado/genética , RNA/metabolismo , Xenopus laevis , Animais , Animais Geneticamente Modificados , Células Germinativas Embrionárias/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Oócitos/metabolismo , Oogênese/genética , RNA/análise , RNA/genética , RNA Mensageiro Estocado/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética
12.
Neurogenetics ; 19(1): 17-26, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29151244

RESUMO

Alterations of the gamma-aminobutyric acid (GABA) signaling system has been strongly linked to the pathophysiology of autism spectrum disorder (ASD). Genetic associations of common variants in GABA receptor subunits, in particular GABRA4 on chromosome 4p12, with ASD have been replicated by several studies. Moreover, molecular investigations have identified altered transcriptional and translational levels of this gene and protein in brains of ASD individuals. Since the genotyped common variants are likely not the functional variants contributing to the molecular consequences or underlying ASD phenotype, this study aims to examine rare sequence variants in GABRA4, including those outside the protein coding regions of the gene. We comprehensively re-sequenced the entire protein coding and noncoding portions of the gene and putative regulatory sequences in 82 ASD individuals and 55 developmentally typical pediatric controls, all homozygous for the most significant previously associated ASD risk allele (G/G at rs1912960). We identified only a single common, coding variant, and no association of any single marker or set of variants with ASD. Functional annotation of noncoding variants identified several rare variants in putative regulatory sites. Finally, a rare variant unique to ASD cases, in an evolutionary conserved site of the 3'UTR, shows a trend toward decreasing gene expression. Hence, GABRA4 rare variants in noncoding DNA may be variants of modest physiological effects in ASD etiology.


Assuntos
Transtorno do Espectro Autista/genética , Receptores de GABA-A/genética , Regiões 3' não Traduzidas , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Cromossomos Humanos Par 4/genética , Predisposição Genética para Doença , Variação Genética , Humanos , Polimorfismo de Nucleotídeo Único , Subunidades Proteicas/genética , População Branca/genética , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 108(6): 2456-61, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21248228

RESUMO

Common heart failure has a strong undefined heritable component. Two recent independent cardiovascular SNP array studies identified a common SNP at 1p36 in intron 2 of the HSPB7 gene as being associated with heart failure. HSPB7 resequencing identified other risk alleles but no functional gene variants. Here, we further show no effect of the HSPB7 SNP on cardiac HSPB7 mRNA levels or splicing, suggesting that the SNP marks the position of a functional variant in another gene. Accordingly, we used massively parallel platforms to resequence all coding exons of the adjacent CLCNKA gene, which encodes the K(a) renal chloride channel (ClC-K(a)). Of 51 exonic CLCNKA variants identified, one SNP (rs10927887, encoding Arg83Gly) was common, in linkage disequilibrium with the heart failure risk SNP in HSPB7, and associated with heart failure in two independent Caucasian referral populations (n = 2,606 and 1,168; combined P = 2.25 × 10(-6)). Individual genotyping of rs10927887 in the two study populations and a third independent heart failure cohort (combined n = 5,489) revealed an additive allele effect on heart failure risk that is independent of age, sex, and prior hypertension (odds ratio = 1.27 per allele copy; P = 8.3 × 10(-7)). Functional characterization of recombinant wild-type Arg83 and variant Gly83 ClC-K(a) chloride channel currents revealed ≈ 50% loss-of-function of the variant channel. These findings identify a common, functionally significant genetic risk factor for Caucasian heart failure. The variant CLCNKA risk allele, telegraphed by linked variants in the adjacent HSPB7 gene, uncovers a previously overlooked genetic mechanism affecting the cardio-renal axis.


Assuntos
Canais de Cloreto/genética , Éxons , Insuficiência Cardíaca/genética , Rim , Mutação de Sentido Incorreto , Miocárdio , Polimorfismo de Nucleotídeo Único , Alelos , Substituição de Aminoácidos , Canais de Cloreto/metabolismo , Estudos de Coortes , Feminino , Genótipo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Fatores de Risco
14.
Mol Ther Nucleic Acids ; 35(1): 102132, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38404505

RESUMO

Mutations within mtDNA frequently give rise to severe encephalopathies. Given that a majority of these mtDNA defects exist in a heteroplasmic state, we harnessed the precision of mitochondrial-targeted TALEN (mitoTALEN) to selectively eliminate mutant mtDNA within the CNS of a murine model harboring a heteroplasmic mutation in the mitochondrial tRNA alanine gene (m.5024C>T). This targeted approach was accomplished by the use of AAV-PHP.eB and a neuron-specific synapsin promoter for effective neuronal delivery and expression of mitoTALEN. We found that most CNS regions were effectively transduced and showed a significant reduction in mutant mtDNA. This reduction was accompanied by an increase in mitochondrial tRNA alanine levels, which are drastically reduced by the m.5024C>T mutation. These results showed that mitochondrial-targeted gene editing can be effective in reducing CNS-mutant mtDNA in vivo, paving the way for clinical trials in patients with mitochondrial encephalopathies.

15.
Hum Mutat ; 34(6): 842-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23463597

RESUMO

Novel genes are now identified at a rapid pace for many Mendelian disorders, and increasingly, for genetically complex phenotypes. However, new challenges have also become evident: (1) effectively managing larger exome and/or genome datasets, especially for smaller labs; (2) direct hands-on analysis and contextual interpretation of variant data in large genomic datasets; and (3) many small and medium-sized clinical and research-based investigative teams around the world are generating data that, if combined and shared, will significantly increase the opportunities for the entire community to identify new genes. To address these challenges, we have developed GEnomes Management Application (GEM.app), a software tool to annotate, manage, visualize, and analyze large genomic datasets (https://genomics.med.miami.edu/). GEM.app currently contains ∼1,600 whole exomes from 50 different phenotypes studied by 40 principal investigators from 15 different countries. The focus of GEM.app is on user-friendly analysis for nonbioinformaticians to make next-generation sequencing data directly accessible. Yet, GEM.app provides powerful and flexible filter options, including single family filtering, across family/phenotype queries, nested filtering, and evaluation of segregation in families. In addition, the system is fast, obtaining results within 4 sec across ∼1,200 exomes. We believe that this system will further enhance identification of genetic causes of human disease.


Assuntos
Genômica , Software , Biologia Computacional/métodos , Segurança Computacional , Genômica/métodos , Humanos , Internet , Reprodutibilidade dos Testes , Interface Usuário-Computador
16.
Circ Res ; 108(1): 18-26, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21030712

RESUMO

RATIONALE: MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. OBJECTIVE: To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). METHODS AND RESULTS: We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1645 mRNAs consistently targeted to mouse cardiac RISCs. We used this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing "seed" sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. CONCLUSIONS: RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context and is applicable to any tissue and any disease state.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs , Miocárdio/metabolismo , RNA Mensageiro/biossíntese , Complexo de Inativação Induzido por RNA , Análise de Sequência de RNA/métodos , Animais , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Transgênicos , MicroRNAs/biossíntese , MicroRNAs/genética , RNA Mensageiro/genética , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo
17.
J Pers Med ; 13(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36983728

RESUMO

The recent integration of open-source data with machine learning models, especially in the medical field, has opened new doors to studying disease progression and/or regression. However, the ability to use medical data for machine learning approaches is limited by the specificity of data for a particular medical condition. In this context, the most recent technologies, like generative adversarial networks (GANs), are being looked upon as a potential way to generate high-quality synthetic data that preserve the clinical variability of a condition. However, despite some success, GAN model usage remains largely minimal when depicting the heterogeneity of a disease such as prostate cancer. Previous studies from our group members have focused on automating the quantitative multi-parametric magnetic resonance imaging (mpMRI) using habitat risk scoring (HRS) maps on the prostate cancer patients in the BLaStM trial. In the current study, we aimed to use the images from the BLaStM trial and other sources to train the GAN models, generate synthetic images, and validate their quality. In this context, we used T2-weighted prostate MRI images as training data for Single Natural Image GANs (SinGANs) to make a generative model. A deep learning semantic segmentation pipeline trained the model to segment the prostate boundary on 2D MRI slices. Synthetic images with a high-level segmentation boundary of the prostate were filtered and used in the quality control assessment by participating scientists with varying degrees of experience (more than ten years, one year, or no experience) to work with MRI images. Results showed that the most experienced participating group correctly identified conventional vs. synthetic images with 67% accuracy, the group with one year of experience correctly identified the images with 58% accuracy, and the group with no prior experience reached 50% accuracy. Nearly half (47%) of the synthetic images were mistakenly evaluated as conventional. Interestingly, in a blinded quality assessment, a board-certified radiologist did not significantly differentiate between conventional and synthetic images in the context of the mean quality of synthetic and conventional images. Furthermore, to validate the usability of the generated synthetic images from prostate cancer MRIs, we subjected these to anomaly detection along with the original images. Importantly, the success rate of anomaly detection for quality control-approved synthetic data in phase one corresponded to that of the conventional images. In sum, this study shows promise that high-quality synthetic images from MRIs can be generated using GANs. Such an AI model may contribute significantly to various clinical applications which involve supervised machine-learning approaches.

18.
Neurobiol Aging ; 131: 182-195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37677864

RESUMO

A missense variant in the tetratricopeptide repeat domain 3 (TTC3) gene (rs377155188, p.S1038C, NM_003316.4:c 0.3113C>G) was found to segregate with disease in a multigenerational family with late-onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing, and the resulting isogenic pair of iPSC lines was differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3-dimensional morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Doença de Alzheimer/genética , Neurônios , Citoesqueleto de Actina , Transtornos de Início Tardio , Prosencéfalo , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases
19.
bioRxiv ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37292815

RESUMO

A missense variant in the tetratricopeptide repeat domain 3 ( TTC3 ) gene (rs377155188, p.S1038C, NM_003316.4:c.3113C>G) was found to segregate with disease in a multigenerational family with late onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing and the resulting isogenic pair of iPSC lines were differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3D morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant. Highlights: The AD risk variant TTC3 p.S1038C reduces the expression levels of TTC3 The variant modifies the expression of AD specific genes BACE1 , INPP5F , and UNC5C Neurons with the variant are enriched for genes in the PI3K-Akt pathwayiPSC-derived neurons with the alteration have increased neurite length and branchingThe variant interferes with actin cytoskeleton and is ameliorated by Cytochalasin D.

20.
Circ Res ; 106(9): 1459-67, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20360248

RESUMO

RATIONALE: Transcriptional profiling can detect subclinical heart disease and provide insight into disease etiology and functional status. Current microarray-based methods are expensive and subject to artifact. OBJECTIVE: To develop RNA sequencing methodologies using next generation massively parallel platforms for high throughput comprehensive analysis of individual mouse cardiac transcriptomes. To compare the results of sequencing- and array-based transcriptional profiling in the well-characterized Galphaq transgenic mouse hypertrophy/cardiomyopathy model. METHODS AND RESULTS: The techniques for preparation of individually bar-coded mouse heart RNA libraries for Illumina Genome Analyzer II resequencing are described. RNA sequencing showed that 234 high-abundance transcripts (>60 copies/cell) comprised 55% of total cardiac mRNA. Parallel transcriptional profiling of Galphaq transgenic and nontransgenic hearts by Illumina RNA sequencing and Affymetrix Mouse Gene 1.0 ST arrays revealed superior dynamic range for mRNA expression and enhanced specificity for reporting low-abundance transcripts by RNA sequencing. Differential mRNA expression in Galphaq and nontransgenic hearts correlated well between microarrays and RNA sequencing for highly abundant transcripts. RNA sequencing was superior to arrays for accurately quantifying lower-abundance genes, which represented the majority of the regulated genes in the Galphaq transgenic model. CONCLUSIONS: RNA sequencing is rapid, accurate, and sensitive for identifying both abundant and rare cardiac transcripts, and has significant advantages in time- and cost-efficiencies over microarray analysis.


Assuntos
Cardiomiopatia Hipertrófica/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Fatores de Transcrição/genética , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA