RESUMO
Proksee (https://proksee.ca) provides users with a powerful, easy-to-use, and feature-rich system for assembling, annotating, analysing, and visualizing bacterial genomes. Proksee accepts Illumina sequence reads as compressed FASTQ files or pre-assembled contigs in raw, FASTA, or GenBank format. Alternatively, users can supply a GenBank accession or a previously generated Proksee map in JSON format. Proksee then performs assembly (for raw sequence data), generates a graphical map, and provides an interface for customizing the map and launching further analysis jobs. Notable features of Proksee include unique and informative assembly metrics provided via a custom reference database of assemblies; a deeply integrated high-performance genome browser for viewing and comparing analysis results at individual base resolution (developed specifically for Proksee); an ever-growing list of embedded analysis tools whose results can be seamlessly added to the map or searched and explored in other formats; and the option to export graphical maps, analysis results, and log files for data sharing and research reproducibility. All these features are provided via a carefully designed multi-server cloud-based system that can easily scale to meet user demand and that ensures the web server is robust and responsive.
Assuntos
Genoma Bacteriano , Software , Reprodutibilidade dos Testes , Bases de Dados de Ácidos Nucleicos , InternetRESUMO
The Comprehensive Antibiotic Resistance Database (CARD; card.mcmaster.ca) combines the Antibiotic Resistance Ontology (ARO) with curated AMR gene (ARG) sequences and resistance-conferring mutations to provide an informatics framework for annotation and interpretation of resistomes. As of version 3.2.4, CARD encompasses 6627 ontology terms, 5010 reference sequences, 1933 mutations, 3004 publications, and 5057 AMR detection models that can be used by the accompanying Resistance Gene Identifier (RGI) software to annotate genomic or metagenomic sequences. Focused curation enhancements since 2020 include expanded ß-lactamase curation, incorporation of likelihood-based AMR mutations for Mycobacterium tuberculosis, addition of disinfectants and antiseptics plus their associated ARGs, and systematic curation of resistance-modifying agents. This expanded curation includes 180 new AMR gene families, 15 new drug classes, 1 new resistance mechanism, and two new ontological relationships: evolutionary_variant_of and is_small_molecule_inhibitor. In silico prediction of resistomes and prevalence statistics of ARGs has been expanded to 377 pathogens, 21,079 chromosomes, 2,662 genomic islands, 41,828 plasmids and 155,606 whole-genome shotgun assemblies, resulting in collation of 322,710 unique ARG allele sequences. New features include the CARD:Live collection of community submitted isolate resistome data and the introduction of standardized 15 character CARD Short Names for ARGs to support machine learning efforts.
Assuntos
Curadoria de Dados , Bases de Dados Factuais , Resistência Microbiana a Medicamentos , Aprendizado de Máquina , Antibacterianos/farmacologia , Genes Bacterianos , Funções Verossimilhança , Software , Anotação de Sequência MolecularRESUMO
BACKGROUND: The reliability of culture-independent pathogen detection in foods using metagenomics is contingent on the quality and composition of the reference database. The inclusion of microbial sequences from a diverse representation of taxonomies in universal reference databases is recommended to maximize classification precision for pathogen detection. However, these sizable databases have high memory requirements that may be out of reach for some users. In this study, we aimed to assess the performance of a foodborne pathogen (FBP)-specific reference database (taxon-specific) relative to a universal reference database (taxon-agnostic). We tested our FBP-specific reference database's performance for detecting Listeria monocytogenes in two complex food matrices-ready-to-eat (RTE) turkey deli meat and prepackaged spinach-using three popular read-based DNA-to-DNA metagenomic classifiers: Centrifuge, Kraken 2 and KrakenUniq. RESULTS: In silico host sequence removal led to substantially fewer false positive (FP) classifications and higher classification precision in RTE turkey deli meat datasets using the FBP-specific reference database. No considerable improvement in classification precision was observed following host filtering for prepackaged spinach datasets and was likely a consequence of a higher microbe-to-host sequence ratio. All datasets classified with Centrifuge using the FBP-specific reference database had the lowest classification precision compared to Kraken 2 or KrakenUniq. When a confidence-scoring threshold was applied, a nearly equivalent precision to the universal reference database was achieved for Kraken 2 and KrakenUniq. Recall was high for both reference databases across all datasets and classifiers. Substantially fewer computational resources were required for metagenomics-based detection of L. monocytogenes using the FBP-specific reference database, especially when combined with Kraken 2. CONCLUSIONS: A universal (taxon-agnostic) reference database is not essential for accurate and reliable metagenomics-based pathogen detection of L. monocytogenes in complex food matrices. Equivalent classification performance can be achieved using a taxon-specific reference database when the appropriate quality control measures, classification software, and analysis parameters are applied. This approach is less computationally demanding and more attainable for the broader scientific and food safety communities.
Assuntos
Listeria monocytogenes , Listeria monocytogenes/genética , Spinacia oleracea , Microbiologia de Alimentos , Metagenômica , Reprodutibilidade dos Testes , CarneRESUMO
Current noninvasive methods for colorectal cancer (CRC) screening are not optimized for persons with inflammatory bowel diseases (IBDs), requiring patients to undergo frequent interval screening via colonoscopy. Although colonoscopy-based screening reduces CRC incidence in IBD patients, rates of interval CRC remain relatively high, highlighting the need for more targeted approaches. In recent years, the discovery of disease-specific microbiome signatures for both IBD and CRC has begun to emerge, suggesting that stool-based biomarker detection using metagenomics and other culture-independent technologies may be useful for personalized, early, noninvasive CRC screening in IBD patients. Here we discuss the utility of the stool microbiome as a noninvasive CRC screening tool. Comparing the performance of multiple microbiome-based CRC classifiers, including several multi-cohort meta-analyses, we find that noninvasive detection of colorectal adenomas and carcinomas from microbial biomarkers is an active area of study with promising early results.
Assuntos
Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Microbiota , Colonoscopia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Detecção Precoce de Câncer/métodos , Humanos , Doenças Inflamatórias Intestinais/diagnósticoRESUMO
OBJECTIVE: Examine if the gut microbiota composition changes across repeated samples in paediatric-onset multiple sclerosis (MS) or monophasic-acquired demyelinating syndromes (monoADS). METHODS: A total of 36 individuals (18 MS/18 monoADS) with ⩾2 stool samples were included. Stool sample-derived DNA was sequenced. Alpha/beta diversities and genus-level taxa were analysed. RESULTS: Mean ages at first sample procurement (MS/monoADS) = 18.0/13.8 years. Median time (months) between first/second samples = 11.2 and second/third = 10.3. Alpha/beta diversities did not differ between stool samples (p > 0.09), while one genus - Solobacterium did (p = 0.001). CONCLUSIONS: The gut microbiota composition in paediatric-onset MS and monoADS exhibited stability, suggesting that single stool sample procurement is a reasonable first approach.
Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla , Criança , Humanos , SíndromeRESUMO
Graphical genome maps are widely used to assess genome features and sequence characteristics. The CGView (Circular Genome Viewer) software family is a popular collection of tools for generating genome maps for bacteria, organelles and viruses. In this review, we describe the capabilities of the original CGView program along with those of subsequent companion applications, including the CGView Server and the CGView Comparison Tool. We also discuss GView, a graphical user interface-enabled rewrite of CGView, and the GView Server, which offers several integrated analyses for identifying shared or unique genome regions relative to a collection of comparison genomes. We conclude with some remarks about our current development efforts related to CGView aimed at adding new functionality while increasing ease of use.
Assuntos
DNA Circular/genética , Genômica/estatística & dados numéricos , Software , Mapeamento Cromossômico , Biologia Computacional , Gráficos por Computador , Escherichia coli O157/genética , Genoma Bacteriano , Genoma Viral , Listeria monocytogenes/genética , Interface Usuário-ComputadorRESUMO
BackgroundWhole genome sequencing (WGS) is increasingly used for pathogen identification and surveillance.AimWe evaluated costs and benefits of routine WGS through case studies at eight reference laboratories in Europe and the Americas which conduct pathogen surveillance for avian influenza (two laboratories), human influenza (one laboratory) and food-borne pathogens (five laboratories).MethodsThe evaluation focused on the institutional perspective, i.e. the 'investment case' for implementing WGS compared with conventional methods, based on costs and benefits during a defined reference period, mostly covering at least part of 2017. A break-even analysis estimated the number of cases of illness (for the example of Salmonella surveillance) that would need to be avoided through WGS in order to 'break even' on costs.ResultsOn a per-sample basis, WGS was between 1.2 and 4.3 times more expensive than routine conventional methods. However, WGS brought major benefits for pathogen identification and surveillance, substantially changing laboratory workflows, analytical processes and outbreaks detection and control. Between 0.2% and 1.1% (on average 0.7%) of reported salmonellosis cases would need to be prevented to break even with respect to the additional costs of WGS.ConclusionsEven at cost levels documented here, WGS provides a level of additional information that more than balances the additional costs if used effectively. The substantial cost differences for WGS between reference laboratories were due to economies of scale, degree of automation, sequencing technology used and institutional discounts for equipment and consumables, as well as the extent to which sequencers are used at full capacity.
Assuntos
Intoxicação Alimentar por Salmonella , América , Animais , Análise Custo-Benefício , Europa (Continente)/epidemiologia , Genoma Bacteriano , Humanos , Sequenciamento Completo do GenomaRESUMO
This study examined the phylogenetic structure of serotype a Haemophilus influenzae (Hia) isolates recovered from patients in Canada. Hia isolates from 490 separate patients and an American Type Culture Collection (ATCC) strain were analyzed by multilocus sequence typing (MLST), with 18 different sequence types (STs) identified. Most (85.7%) Hia patient isolates were typed as ST-23 and another 12.7% belonged to 14 different STs with 6, 5, or 4 MLST gene loci related to ST-23 (ST-23 complex). Core genome single-nucleotide variation phylogeny (SNVPhyl) on whole genome sequence (WGS) data of 121 Hia patient isolates representing all identified STs and the ATCC strain revealed 2 phylogenetic populations, with all the ST-23 complex isolates within 1 population. The other phylogenetic population contained only the ATCC strain and 3 patient isolates. Concatenated hitABC sequences retrieved from WGS data and analyzed by MEGA (Molecular Evolutionary Genetic Analysis) alignment confirmed the phylogeny obtained by SNVPhyl. The sodC gene was found only in isolates in the minor phylogenetic population. The 2 phylogenetic populations of the Canadian Hia isolates are similar to the 2 clonal divisions described for serotype b H. influenzae. Combining MLST, core SNVPhyl, and hitABC gene sequence alignment showed that most (99.4%) Canadian Hia patient isolates belonged to 1 major phylogenetic population.
Assuntos
Infecções por Haemophilus/virologia , Haemophilus influenzae/genética , Sequenciamento Completo do Genoma , Canadá/epidemiologia , Pré-Escolar , Evolução Molecular , Feminino , Infecções por Haemophilus/epidemiologia , Haemophilus influenzae/imunologia , Humanos , Lactente , Masculino , Tipagem de Sequências Multilocus , Filogenia , Alinhamento de Sequência , SorogrupoRESUMO
There is a growing appreciation for the role of the gut microbiome in human health and disease. Aided by advances in sequencing technologies and analytical methods, recent research has shown the healthy gut microbiome to possess considerable diversity and functional capacity. Dysbiosis of the gut microbiota is believed to be involved in the pathogenesis of not only diseases that primarily affect the gastrointestinal tract but also other less obvious diseases, including neurologic, rheumatologic, metabolic, hepatic, and other illnesses. Chronic immune-mediated inflammatory diseases (IMIDs) represent a group of diseases that share many underlying etiological factors including genetics, aberrant immunological responses, and environmental factors. Gut dysbiosis has been reported to be common to IMIDs as a whole, and much effort is currently being directed toward elucidating microbiome-mediated disease mechanisms and their implications for causality. In this review, we discuss gut microbiome studies in several IMIDs and show how these studies can inform our understanding of the role of the gut microbiome in inflammatory bowel disease.
Assuntos
Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/terapia , Probióticos/uso terapêutico , Artrite Psoriásica/imunologia , Artrite Psoriásica/terapia , Artrite Reumatoide/imunologia , Artrite Reumatoide/terapia , Feminino , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/terapia , Masculino , Prognóstico , Medição de Risco , Papel (figurativo) , Espondilite Anquilosante/imunologia , Espondilite Anquilosante/terapia , Resultado do TratamentoRESUMO
BACKGROUND: Comparative knowledge of microbiomes and resistomes across environmental interfaces between animal production systems and urban settings is lacking. In this study, we executed a comparative analysis of the microbiota and resistomes of metagenomes from cattle feces, catch basin water, manured agricultural soil and urban sewage. RESULTS: Metagenomic DNA from composite fecal samples (FC; n = 12) collected from penned cattle at four feedlots in Alberta, Canada, along with water from adjacent catchment basins (CB; n = 13), soil (n = 4) from fields in the vicinity of one of the feedlots and urban sewage influent (SI; n = 6) from two municipalities were subjected to Illumina HiSeq2000 sequencing. Firmicutes exhibited the highest prevalence (40%) in FC, whereas Proteobacteria were most abundant in CB (64%), soil (60%) and SI (83%). Among sample types, SI had the highest diversity of antimicrobial resistance (AMR), and metal and biocide resistance (MBR) classes (13 & 15) followed by FC (10 & 8), CB (8 & 4), and soil (6 & 1). The highest antimicrobial resistant (AMR) gene (ARG) abundance was harboured by FC, whereas soil samples had a very small, but unique resistome which did not overlap with FC & CB resistomes. In the beef production system, tetracycline resistance predominated followed by macrolide resistance. The SI resistome harboured ß-lactam, macrolide, tetracycline, aminoglycoside, fluoroquinolone and fosfomycin resistance determinants. Metal and biocide resistance accounted for 26% of the SI resistome with a predominance of mercury resistance. CONCLUSIONS: This study demonstrates an increasing divergence in the nature of the microbiome and resistome as the distance from the feedlot increases. Consistent with antimicrobial use, tetracycline and macrolide resistance genes were predominant in the beef production system. One of the feedlots contributed both conventional (raised with antibiotics) and natural (raised without antibiotics) pens samples. Although natural pen samples exhibited a microbiota composition that was similar to samples from conventional pens, their resistome was less complex. Similarly, the SI resistome was indicative of drug classes used in humans and the greater abundance of mercury resistance may be associated with contamination of municipal water with household and industrial products.
Assuntos
Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Farmacorresistência Bacteriana , Fezes/microbiologia , Esterco/microbiologia , Microbiota , Esgotos/microbiologia , Animais , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Biodiversidade , Canadá , Bovinos , Solo/química , Microbiologia do SoloRESUMO
This study examined the evolving nature of Bordetella pertussis in Ontario, Canada, by characterizing isolates for their genotypes and expression of pertactin (PRN). From 2009 to 2017, 413 B. pertussis were cultured from pertussis cases at the Public Health Ontario Laboratory. Their genotypes were determined by partial gene sequence analysis of their virulence and (or) vaccine antigens: filamentous haemagglutinin, PRN, fimbriae 3, and pertussis toxin, including the promoter region. Expression of PRN was measured by Western immunoblot. Two predominant genotypes, ST-1 and ST-2, were found throughout the study and were responsible for 47.5% and 46.3% of all case isolates, respectively. The prevalence of ST-1 appeared to fluctuate from 80.3% in 2009 to 20.0% in 2014 and 58.5% in 2017, while the prevalence of ST-2 changed from 18.4% in 2009 to 80.0% in 2014 and 26.2% in 2017. A PRN-deficient strain was first noted in 2011 (16.7%), and its prevalence increased to 70.8% in 2016 but decreased to 46.2% in 2017. More ST-2 (46.6%) than ST-1 (16.8%) strains were associated with PRN deficiency. Newer ST-21 and ST-22 found in 2015-2017 were uniformly PRN deficient. The impact of the evolving nature of B. pertussis on disease epidemiology requires further longitudinal studies.
Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella pertussis/genética , Bordetella pertussis/isolamento & purificação , Fatores de Virulência de Bordetella/metabolismo , Coqueluche/microbiologia , Proteínas da Membrana Bacteriana Externa/genética , Bordetella pertussis/metabolismo , Genótipo , Humanos , Ontário/epidemiologia , Prevalência , Fatores de Virulência de Bordetella/genética , Coqueluche/epidemiologiaRESUMO
The ready availability of vast amounts of genomic sequence data has created the need to rethink comparative genomics algorithms using 'big data' approaches. Neptune is an efficient system for rapidly locating differentially abundant genomic content in bacterial populations using an exact k-mer matching strategy, while accommodating k-mer mismatches. Neptune's loci discovery process identifies sequences that are sufficiently common to a group of target sequences and sufficiently absent from non-targets using probabilistic models. Neptune uses parallel computing to efficiently identify and extract these loci from draft genome assemblies without requiring multiple sequence alignments or other computationally expensive comparative sequence analyses. Tests on simulated and real datasets showed that Neptune rapidly identifies regions that are both sensitive and specific. We demonstrate that this system can identify trait-specific loci from different bacterial lineages. Neptune is broadly applicable for comparative bacterial analyses, yet will particularly benefit pathogenomic applications, owing to efficient and sensitive discovery of differentially abundant genomic loci. The software is available for download at: http://github.com/phac-nml/neptune.
Assuntos
Bactérias/genética , Biologia Computacional/métodos , Análise Mutacional de DNA/métodos , Estudos de Associação Genética , Técnicas Microbiológicas/métodos , Análise de Sequência de DNA/métodos , Software , Bacillus anthracis/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Transcriptoma , Vibrio cholerae/genéticaRESUMO
Human infections by type B influenza virus constitute about 25% of all influenza cases. The viral hemagglutinin is comprised of two subunits, HA1 and HA2. While HA1 is constantly evolving in an unpredictable fashion, the HA2 subunit is highly conserved, making it a potential candidate for a universal vaccine. However, immunodominant epitopes in the HA2 subunit remain largely unknown. To delineate MHC Class I epitopes, we first identified 9-mer H-2Kd-restricted CD8 T cell epitopes in the HA2 domain by in silico analyses, followed by evaluating the immunodominance of these peptides in mice challenged with the virus. Of three peptides selected through in silico analysis, the universally conserved peptide, YYSTAASSL (B/HA2-190), possessed the highest predicted binding affinity to MHC Class I and was most effective in inducing IL-2 and TNF-α in mouse splenocytes. Importantly, the peptide demonstrated best capability of stimulating peptide-specific ex-vivo cytotoxicity against target cells. Taken together, this finding would be of value for assessment of cell-mediated immune responses elicited by vaccines based on the highly conserved HA2 stalk domain.
Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza B/imunologia , Animais , Antígenos CD8/química , Simulação por Computador , Feminino , Antígenos H-2/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Imunidade Celular , Epitopos Imunodominantes/química , Vírus da Influenza B/química , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Interleucina-2/biossíntese , Camundongos , Camundongos Endogâmicos DBA , Modelos Imunológicos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Subunidades Proteicas , Linfócitos T Citotóxicos/imunologia , Fator de Necrose Tumoral alfa/biossínteseRESUMO
The number of large-scale genomics projects is increasing due to the availability of affordable high-throughput sequencing (HTS) technologies. The use of HTS for bacterial infectious disease research is attractive because one whole-genome sequencing (WGS) run can replace multiple assays for bacterial typing, molecular epidemiology investigations, and more in-depth pathogenomic studies. The computational resources and bioinformatics expertise required to accommodate and analyze the large amounts of data pose new challenges for researchers embarking on genomics projects for the first time. Here, we present a comprehensive overview of a bacterial genomics projects from beginning to end, with a particular focus on the planning and computational requirements for HTS data, and provide a general understanding of the analytical concepts to develop a workflow that will meet the objectives and goals of HTS projects.
Assuntos
Doenças Transmissíveis/microbiologia , Genoma Bacteriano/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , HumanosRESUMO
MOTIVATION: There are various reasons for rerunning bioinformatics tools and pipelines on sequencing data, including reproducing a past result, validation of a new tool or workflow using a known dataset, or tracking the impact of database changes. For identical results to be achieved, regularly updated reference sequence databases must be versioned and archived. Database administrators have tried to fill the requirements by supplying users with one-off versions of databases, but these are time consuming to set up and are inconsistent across resources. Disk storage and data backup performance has also discouraged maintaining multiple versions of databases since databases such as NCBI nr can consume 50 Gb or more disk space per version, with growth rates that parallel Moore's law. RESULTS: Our end-to-end solution combines our own Kipper software package-a simple key-value large file versioning system-with BioMAJ (software for downloading sequence databases), and Galaxy (a web-based bioinformatics data processing platform). Available versions of databases can be recalled and used by command-line and Galaxy users. The Kipper data store format makes publishing curated FASTA databases convenient since in most cases it can store a range of versions into a file marginally larger than the size of the latest version. AVAILABILITY AND IMPLEMENTATION: Kipper v1.0.0 and the Galaxy Versioned Data tool are written in Python and released as free and open source software available at https://github.com/Public-Health-Bioinformatics/kipper and https://github.com/Public-Health-Bioinformatics/versioned_data, respectively; detailed setup instructions can be found at https://github.com/Public-Health-Bioinformatics/versioned_data/blob/master/doc/setup.md CONTACT: : Damion.Dooley@Bccdc.Ca or William.Hsiao@Bccdc.CaSupplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Software , Interface Usuário-ComputadorRESUMO
The emergence of Neisseria gonorrhoeae strains with decreased susceptibility to cephalosporins and azithromycin (AZM) resistance (AZM(r)) represents a public health threat of untreatable gonorrhea infections. Genomic epidemiology through whole-genome sequencing was used to describe the emergence, dissemination, and spread of AZM(r) strains. The genomes of 213 AZM(r) and 23 AZM-susceptible N. gonorrhoeae isolates collected in Canada from 1989 to 2014 were sequenced. Core single nucleotide polymorphism (SNP) phylogenomic analysis resolved 246 isolates into 13 lineages. High-level AZM(r) (MICs ≥ 256 µg/ml) was found in 5 phylogenetically diverse isolates, all of which possessed the A2059G mutation (Escherichia coli numbering) in all four 23S rRNA alleles. One isolate with high-level AZM(r) collected in 2009 concurrently had decreased susceptibility to ceftriaxone (MIC = 0.125 µg/ml). An increase in the number of 23S rRNA alleles with the C2611T mutations (E. coli numbering) conferred low to moderate levels of AZM(r) (MICs = 2 to 4 and 8 to 32 µg/ml, respectively). Low-level AZM(r) was also associated with mtrR promoter mutations, including the -35A deletion and the presence of Neisseria meningitidis-like sequences. Geographic and temporal phylogenetic clustering indicates that emergent AZM(r) strains arise independently and can then rapidly expand clonally in a region through local sexual networks.
Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Gonorreia/epidemiologia , Gonorreia/microbiologia , Neisseria gonorrhoeae/classificação , Neisseria gonorrhoeae/efeitos dos fármacos , Adolescente , Adulto , Idoso , Proteínas de Bactérias/genética , Canadá/epidemiologia , Análise por Conglomerados , Feminino , Genoma Bacteriano , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Epidemiologia Molecular , Mutação , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/isolamento & purificação , Filogenia , Polimorfismo de Nucleotídeo Único , RNA Ribossômico 23S/genética , Proteínas Repressoras/genética , Análise de Sequência de DNA , Adulto JovemRESUMO
The etiology of inflammatory bowel disease (IBD) is unknown; current research is focused on determining environmental factors. One consideration is drinking water: water systems harbour considerable microbial diversity, with bacterial concentrations estimated at 10(6)-10(8) cells/L. Perhaps differences in microbial ecology of water sources may impact differential incidence rates of IBD. Regions of Manitoba were geographically mapped according to incidence rates of IBD and identified as high (HIA) or low (LIA) incidence areas. Bulk water, filter material, and pipe wall samples were collected from public buildings in different jurisdictions and their population structure analyzed using 16S rDNA sequencing. At the phylum level, Proteobacteria were observed significantly less frequently (P = 0.02) in HIA versus LIA. The abundance of Proteobacteria was also found to vary according to water treatment distribution networks. Gammaproteobacteria was the most abundant class of bacteria and was observed more frequently (P = 0.006) in LIA. At the genus level, microbes found to associate with HIA include Bradyrhizobium (P = 0.02) and Pseudomonas (P = 0.02). Particular microbes were found to associate with LIA or HIA, based on sample location and (or) type. This work lays out a basis for further studies exploring water as a potential environmental source for IBD triggers.
Assuntos
Água Potável/microbiologia , Doenças Inflamatórias Intestinais/etiologia , Canadá/epidemiologia , DNA Ribossômico/genética , Humanos , Incidência , Doenças Inflamatórias Intestinais/epidemiologia , Doenças Inflamatórias Intestinais/microbiologia , Microbiota , Proteobactérias/genética , Pseudomonas/genética , RNA Ribossômico 16S/genéticaRESUMO
A large-scale, whole-genome comparison of Canadian Neisseria gonorrhoeae isolates with high-level cephalosporin MICs was used to demonstrate a genomic epidemiology approach to investigate strain relatedness and dynamics. Although current typing methods have been very successful in tracing short-chain transmission of gonorrheal disease, investigating the temporal evolutionary relationships and geographical dissemination of highly clonal lineages requires enhanced resolution only available through whole-genome sequencing (WGS). Phylogenomic cluster analysis grouped 169 Canadian strains into 12 distinct clades. While some N. gonorrhoeae multiantigen sequence types (NG-MAST) agreed with specific phylogenomic clades or subclades, other sequence types (ST) and closely related groups of ST were widely distributed among clades. Decreased susceptibility to extended-spectrum cephalosporins (ESC-DS) emerged among a group of diverse strains in Canada during the 1990s with a variety of nonmosaic penA alleles, followed in 2000/2001 with the penA mosaic X allele and then in 2007 with ST1407 strains with the penA mosaic XXXIV allele. Five genetically distinct ESC-DS lineages were associated with penA mosaic X, XXXV, and XXXIV alleles and nonmosaic XII and XIII alleles. ESC-DS with coresistance to azithromycin was observed in 5 strains with 23S rRNA C2599T or A2143G mutations. As the costs associated with WGS decline and analysis tools are streamlined, WGS can provide a more thorough understanding of strain dynamics, facilitate epidemiological studies to better resolve social networks, and improve surveillance to optimize treatment for gonorrheal infections.
Assuntos
Resistência às Cefalosporinas , Genoma Bacteriano , Gonorreia/epidemiologia , Gonorreia/microbiologia , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/genética , Filogenia , Adolescente , Adulto , Antibacterianos/farmacologia , Canadá/epidemiologia , Criança , Pré-Escolar , Feminino , Genótipo , Gonorreia/história , História do Século XX , História do Século XXI , Humanos , Lactente , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Neisseria gonorrhoeae/classificação , Polimorfismo de Nucleotídeo Único , Adulto JovemRESUMO
Polyphasic taxonomic analysis was performed on a clinical isolate (NML 06-3099T) from a cystic fibrosis patient, including whole-genome sequencing, proteomics, phenotypic testing, electron microscopy, chemotaxonomy and a clinical investigation. Comparative whole-genome sequence analysis and multilocus sequence analysis (MLSA) between Tatumella ptyseos ATCC 33301T and clinical isolate NML 06-3099T suggested that the clinical isolate was closely related to, but distinct from, the species T. ptyseos. By 16S rRNA gene sequencing, the clinical isolate shared 98.7 % sequence identity with T. ptyseos ATCC 33301T. A concatenate of six MLSA loci (totalling 4500 bp) revealed < 93.9 % identity between T. ptyseos ATCC 33301T, other members of the genus and the clinical isolate. A whole-genome sequence comparison between NML 06-3099T and ATCC 33301T determined that the average nucleotide identity was 76.24 %. The overall DNA G+C content of NML 06-3099T was 51.27 %, consistent with members of the genus Tatumella. By matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS analysis, NML 06-3099T had a genus-level match, but not a species-level match, to T. ptyseos. By shotgun proteomics, T. ptyseos ATCC 33301T and NML 06-3099T were found to have unique proteomes. The two strains had similar morphologies and multiple fimbriae, as observed by transmission electron microscopy, but were distinguishable by phenotypic testing. Cellular fatty acids found were typical for members of the Enterobacteriaceae. NML 06-3099T was susceptible to commonly used antibiotics. Based on these data, NML 06-3099T represents a novel species in the genus Tatumella, for which the name Tatumella saanichensis sp. nov. is proposed (type strain NML 06-3099T = CCUG 55408T = DSM 19846T).
Assuntos
Fibrose Cística/microbiologia , Enterobacteriaceae/classificação , Filogenia , Adolescente , Técnicas de Tipagem Bacteriana , Composição de Bases , Colúmbia Britânica , DNA Bacteriano/genética , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Ácidos Graxos/química , Humanos , Masculino , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Escarro/microbiologiaRESUMO
The only universally conserved sequence among all influenza A viral neuraminidases is located between amino acids 222 and 230. However, the potential roles of these amino acids remain largely unknown. Through an array of experimental approaches including mutagenesis, reverse genetics, and growth kinetics, we found that this sequence could markedly affect viral replication. Additional experiments revealed that enzymes with mutations in this region demonstrated substantially decreased catalytic activity, substrate binding, and thermostability. Consistent with viral replication analyses and enzymatic studies, protein modeling suggests that these amino acids could either directly bind to the substrate or contribute to the formation of the active site in the enzyme. Collectively, these findings reveal the essential role of this unique region in enzyme function and viral growth, which provides the basis for evaluating the validity of this sequence as a potential target for antiviral intervention and vaccine development.