Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem Biophys Res Commun ; 482(4): 1271-1277, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27939881

RESUMO

ASPP2 is a tumor suppressor that works, at least in part, through enhancing p53-dependent apoptosis. We now describe a new ASPP2 isoform, ΔN-ASPP2, generated from an internal transcription start site that encodes an N-terminally truncated protein missing a predicted 254 amino acids. ΔN-ASPP2 suppresses p53 target gene transactivation, promoter occupancy, and endogenous p53 target gene expression in response to DNA damage. Moreover, ΔN-ASPP2 promotes progression through the cell cycle, as well as resistance to genotoxic stress-induced growth inhibition and apoptosis. Additionally, we found that ΔN-ASPP2 expression is increased in human breast tumors as compared to adjacent normal breast tissue; in contrast, ASPP2 is suppressed in the majority of these breast tumors. Together, our results provide insight into how this new ASPP2 isoform may play a role in regulating the ASPP2-p53 axis.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/química , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Clonagem Molecular , Dano ao DNA , Feminino , Humanos , Camundongos , Domínios Proteicos , Ativação Transcricional , Proteína Supressora de Tumor p53/genética
2.
Proc Natl Acad Sci U S A ; 110(1): 312-7, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248303

RESUMO

The ASPP2 (also known as 53BP2L) tumor suppressor is a proapoptotic member of a family of p53 binding proteins that functions in part by enhancing p53-dependent apoptosis via its C-terminal p53-binding domain. Mounting evidence also suggests that ASPP2 harbors important nonapoptotic p53-independent functions. Structural studies identify a small G protein Ras-association domain in the ASPP2 N terminus. Because Ras-induced senescence is a barrier to tumor formation in normal cells, we investigated whether ASPP2 could bind Ras and stimulate the protein kinase Raf/MEK/ERK signaling cascade. We now show that ASPP2 binds to Ras-GTP at the plasma membrane and stimulates Ras-induced signaling and pERK1/2 levels via promoting Ras-GTP loading, B-Raf/C-Raf dimerization, and C-Raf phosphorylation. These functions require the ASPP2 N terminus because BBP (also known as 53BP2S), an alternatively spliced ASPP2 isoform lacking the N terminus, was defective in binding Ras-GTP and stimulating Raf/MEK/ERK signaling. Decreased ASPP2 levels attenuated H-RasV12-induced senescence in normal human fibroblasts and neonatal human epidermal keratinocytes. Together, our results reveal a mechanism for ASPP2 tumor suppressor function via direct interaction with Ras-GTP to stimulate Ras-induced senescence in nontransformed human cells.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Senescência Celular/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas ras/metabolismo , Dimerização , Fibroblastos , Células HCT116 , Humanos , Queratinócitos , Microscopia de Fluorescência , Fosforilação , Plasmídeos/genética , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , RNA Interferente Pequeno/genética
3.
Future Oncol ; 10(5): 803-11, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24799061

RESUMO

Orteronel (also known as TAK-700) is a novel hormonal therapy that is currently in testing for the treatment of prostate cancer. Orteronel inhibits the 17,20 lyase activity of the enzyme CYP17A1, which is important for androgen synthesis in the testes, adrenal glands and prostate cancer cells. Preclinical studies demonstrate that orteronel treatment suppresses androgen levels and causes shrinkage of androgen-dependent organs, such as the prostate gland. Early reports of clinical studies demonstrate that orteronel treatment leads to reduced prostate-specific antigen levels, a marker of prostate cancer tumor burden, and more complete suppression of androgen synthesis than conventional androgen deprivation therapies that act in the testes alone. Treatment with single-agent orteronel has been well tolerated with fatigue as the most common adverse event, while febrile neutropenia was the dose-limiting toxicity in a combination study of orteronel with docetaxel. Recently, the ELM-PC5 Phase III clinical trial in patients with advanced-stage prostate cancer who had received prior docetaxel was unblinded as the overall survival primary end point was not achieved. However, additional Phase III orteronel trials are ongoing in men with earlier stages of prostate cancer.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Imidazóis/uso terapêutico , Naftalenos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Androgênios/biossíntese , Ensaios Clínicos como Assunto , Avaliação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Humanos , Imidazóis/efeitos adversos , Masculino , Naftalenos/efeitos adversos , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/patologia
4.
Oncotarget ; 8(67): 111084-111095, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29340039

RESUMO

Recent work demonstrates that castration-resistant prostate cancer (CRPC) tumors harbor countless genomic aberrations that control many hallmarks of cancer. While some specific mutations in CRPC may be actionable, many others are not. We hypothesized that genomic aberrations in cancer may operate in concert to promote drug resistance and tumor progression, and that organization of these genomic aberrations into therapeutically targetable pathways may improve our ability to treat CRPC. To identify the molecular underpinnings of enzalutamide-resistant CRPC, we performed transcriptional and copy number profiling studies using paired enzalutamide-sensitive and resistant LNCaP prostate cancer cell lines. Gene networks associated with enzalutamide resistance were revealed by performing an integrative genomic analysis with the PAthway Representation and Analysis by Direct Reference on Graphical Models (PARADIGM) tool. Amongst the pathways enriched in the enzalutamide-resistant cells were those associated with MEK, EGFR, RAS, and NFKB. Functional validation studies of 64 genes identified 10 candidate genes whose suppression led to greater effects on cell viability in enzalutamide-resistant cells as compared to sensitive parental cells. Examination of a patient cohort demonstrated that several of our functionally-validated gene hits are deregulated in metastatic CRPC tumor samples, suggesting that they may be clinically relevant therapeutic targets for patients with enzalutamide-resistant CRPC. Altogether, our approach demonstrates the potential of integrative genomic analyses to clarify determinants of drug resistance and rational co-targeting strategies to overcome resistance.

5.
Oncotarget ; 7(26): 40690-40703, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27276681

RESUMO

Prostate cancer is the most commonly diagnosed and second-most lethal cancer among men in the United States. The vast majority of prostate cancer deaths are due to castration-resistant prostate cancer (CRPC) - the lethal form of the disease that has progressed despite therapies that interfere with activation of androgen receptor (AR) signaling. One emergent resistance mechanism to medical castration is synthesis of intratumoral androgens that activate the AR. This insight led to the development of the AR antagonist enzalutamide. However, resistance to enzalutamide invariably develops, and disease progression is nearly universal. One mechanism of resistance to enzalutamide is an F877L mutation in the AR ligand-binding domain that can convert enzalutamide to an agonist of AR activity. However, mechanisms that contribute to the agonist switch had not been fully clarified, and there were no therapies to block AR F877L. Using cell line models of castration-resistant prostate cancer (CRPC), we determined that cellular androgen content influences enzalutamide agonism of mutant F877L AR. Further, enzalutamide treatment of AR F877L-expressing cell lines recapitulated the effects of androgen activation of F877L AR or wild-type AR. Because the BET bromodomain inhibitor JQ-1 was previously shown to block androgen activation of wild-type AR, we tested JQ-1 in AR F877L-expressing CRPC models. We determined that JQ-1 suppressed androgen or enzalutamide activation of mutant F877L AR and suppressed growth of mutant F877L AR CRPC tumors in vivo, demonstrating a new strategy to treat tumors harboring this mutation.


Assuntos
Androgênios/química , Mutação , Feniltioidantoína/análogos & derivados , Receptores Androgênicos/genética , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Benzamidas , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/química , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Ligantes , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Nitrilas , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Domínios Proteicos , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA