Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Dis ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221240

RESUMO

Eruca vesicaria subsp. sativa (Mill.) Thell. (arugula or rocket) is a leafy vegetable originating from the Mediterranean region primarily being sold in bagged salads. From 2014 to 2017, plants (cv. Montana) exhibiting blackened leaf veins and irregular V-shaped chlorotic to necroic lesions at the leaf margins were observed in commercial greenhouses in Flanders, Belgium (Figure S1A). Symptoms started after harvest of the first cut, indicating that leaf injury favours disease development. By the last cut, infections had spread uniformly across the plots, with symptoms advanced to the point where harvesting was no longer profitable. Excised surface-sterilized necrotic leaf tissue and seeds were homogenized in phosphate buffer (PB), followed by dilution plating on Pseudomonas Agar F containing sucrose. After four days at 28°C, bright yellow round, mucoid, convex Xanthomonas-like colonies were obtained, both from leaves and seeds. For confirmation, DNA was extracted from pure cultures after which a partial fragment of gyrB was amplified and sequenced (Holtappels et al. 2022). Amplicons were trimmed to 530 nucleotides (Genbank ON815895-ON815900) according to Parkinson et al. (2007) and compared with the NCBI database. Strain GBBC 3139 shares 100% sequence identity with Xanthomonas campestris pv. campestris (Xcc) type strain LMG 568 and with RKFB 1361-1364, isolated from arugula in Serbia (Prokic et al. 2022). The other isolates from Belgian rocket - GBBC 3036, 3058, 3077, 3217 and 3236 - all have a gyrB sequence 100% identical to that of Xcc strain ICMP 4013, among others. To determine the genetic relatedness to other pathogenic Xc strains, the genomes of GBBC 3077, 3217, 3236 and 3139 were sequenced using a MinION (Nanopore) and non-clonal sequences were submitted to NCBI (BioProject PRJNA967242). Genomes were compared by calculating Average Nucleotide Identity (ANI). This revealed that the Belgian strains cluster together with Xc isolates originating from Brassica crops and separate from strains identified as Xc pv. barbareae, pv. incanae and pv. raphani (Figure S2A). Their designation as pv. campestris is supported by maximum likelihood clustering of concatenated gyrB-avrBs2 sequences (EPPO, 2021; Figure S2B,C). Finally, pathogenicity was verified on five-week-old rocket 'Pronto' plants grown in a commercial potting mix by cutting the leaves along the midrib with scissors dipped into a suspension of 108 cfu/ml of each strain or PB as control (4 plants/strain). Plants were kept in closed polypropylene boxes for 48 hr to support high humidity and facilitate infection. They were then maintained at 25 ± 2 °C. Lesions like those observed on commercial plants developed on the inoculated leaves within one week (Figure S1B). Bacterial colonies reisolated from symptomatic tissue were identified based on gyrB as the strains used for inoculation, thereby fulfilling Koch's postulates. To the best of our knowledge, this is the first report of black rot disease in arugula caused by Xcc in Belgium. Previously, Xcc on arugula has been reported in Argentina, California and Serbia as well (Romero et al. 2008; Rosenthal et al. 2017; Prokic et al. 2022). Arugula being a minor crop in Belgium, challenged by Xcc infections and strong import competition, many growers have abandoned the sector in recent years. Therefore, this study makes a strong case for early detection of disease symptoms and timely application of relevant management strategies in vulnerable crop settings.

2.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34913859

RESUMO

This paper describes a novel species isolated in 2011 and 2012 from nursery-grown Hydrangea arborescens cultivars in Flanders, Belgium. After 4 days at 28 °C, the strains yielded yellow, round, convex and mucoid colonies. Pathogenicity of the strains was confirmed on its isolation host, as well as on Hydrangea quercifolia. Analysis using MALDI-TOF MS identified the Hydrangea strains as belonging to the genus Xanthomonas but excluded them from the species Xanthomonas hortorum. A phylogenetic tree based on gyrB confirmed the close relation to X. hortorum. Three fatty acids were dominant in the Hydrangea isolates: anteiso-C15 : 0, iso-C15 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). Unlike X. hortorum pathovars, the Hydrangea strains were unable to grow in the presence of lithium chloride and could only weakly utilize d-fructose-6-PO4 and glucuronamide. Phylogenetic characterization based on multilocus sequence analysis and phylogenomic characterization revealed that the strains are close to, yet distinct from, X. hortorum. The genome sequences of the strains had average nucleotide identity values ranging from 94.35-95.19 % and in silico DNA-DNA hybridization values ranging from 55.70 to 59.40 % to genomes of the X. hortorum pathovars. A genomics-based loop-mediated isothermal amplification assay was developed which was specific to the Hydrangea strains for its early detection. A novel species, Xanthomonas hydrangeae sp. nov., is proposed with strain LMG 31884T (=CCOS 1956T) as the type strain.


Assuntos
Hydrangea , Filogenia , Xanthomonas , Técnicas de Tipagem Bacteriana , Composição de Bases , Bélgica , DNA Bacteriano/genética , Ácidos Graxos/química , Hydrangea/microbiologia , Hibridização de Ácido Nucleico , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Xanthomonas/citologia , Xanthomonas/isolamento & purificação
3.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331264

RESUMO

The prevalence of Pseudomonas syringae pv. porri (Pspo) in Belgium continues to increase and sustainable treatments for this pathogen remain unavailable. A potentially attractive biocontrol strategy would be the application of bacteriophages. The ideal application strategy of phages in an agricultural setting remains unclear, especially in a field-based production such as for leek plants in Flanders. Therefore, more insight in bacteria-phage interaction is required, along with the evaluation of different application strategies. In this study, we further characterized the infection strategy of two Pspo phages, KIL3b and KIL5. We found that both phages recognize lipopolysaccharide (LPS) moieties on the surface of the bacterium. LPS is an important pathogenicity factor of Pspo. Our data also suggest that KIL5 requires an additional protein in the bacterial cytoplasmatic membrane to efficiently infect its host. Virulence tests showed that this protein also contributes to Pspo virulence. Furthermore, a cocktail of both phages was applied in a seed bioassay. A combination of KIL3b and KIL5 reduced the bacterial concentration 100-fold. However, in vitro Pspo resistance against phage infection developed quite rapidly. However, the impact of this phage resistance might be mitigated as is suggested by the fact that those resistance mutations preferably occur in genes involved in LPS metabolism, and that the virulence of those mutants is possibly reduced. Our data suggest that the phage cocktail has promising potential to lower the prevalence of Pspo and to be integrated in a pest management strategy. Targeted research is needed to further explore the applicability of the phages in combination with other disease control strategies.


Assuntos
Bacteriófagos/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/virologia , Receptores Virais/metabolismo , Bélgica , Teste de Complementação Genética , Genoma Bacteriano , Genômica , Mutação , Polimorfismo de Nucleotídeo Único , Pseudomonas syringae/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência
4.
Appl Microbiol Biotechnol ; 103(16): 6657-6672, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31273398

RESUMO

Rhizogenic agrobacteria induce extensive root proliferation, in several economically valuable, dicotyledonous plant species, a phenomenon referred to as "hairy roots." Besides their pathogenic nature, agrobacteria have proven to be a valuable asset in biotechnology and molecular plant breeding. To assess the potential of frequently used rhizogenic strains, growth in yeast extract glucose broth and antibiotic resistance was analyzed. Growth curves were established for Arqua1, NCPPB2659, LMG150, LMG152, and ATCC15834; and regression analysis of the exponential growth phase resulted in a reliable and standardized method for preparation of a bacterial suspension for inoculation. Cell density did not correlate with the timing of hairy root emergence. The highest number of hairy roots was obtained with an inoculum of 1 × 108 CFU ml-1 for Arqua1, NCPPB2659, and LMG152. Cell density of ATCC15834 did not affect the number of hairy roots formed. The identity of the rhizogenic strains for plant transformation was verified in phylogenetic analysis using average nucleotide identity (ANI), which also provided insight in their genetic diversity within the Rhizobium taxon.


Assuntos
Agrobacterium/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Transformação Genética , Agrobacterium/crescimento & desenvolvimento , Daucus carota/genética , Daucus carota/microbiologia , Genes Bacterianos , Loci Gênicos
5.
BMC Genomics ; 15: 392, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24885539

RESUMO

BACKGROUND: The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. RESULTS: To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. CONCLUSIONS: The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and adaptation mechanisms present in the genus Clavibacter.


Assuntos
Actinomycetales/classificação , Actinomycetales/genética , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Actinomycetales/fisiologia , Adaptação Biológica , Sequência de Bases , Genoma Bacteriano , Dados de Sequência Molecular , Plasmídeos , Sementes/microbiologia , Análise de Sequência de DNA , Virulência
6.
Syst Appl Microbiol ; 47(2-3): 126489, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325043

RESUMO

Curtobacterium flaccumfaciens (Microbacteriaceae), a plant-pathogenic coryneform species includes five pathovars with valid names and a number of proposed - but unvalidated - new members. In this study, phenotypic features and DNA similarity indexes were investigated among all C. flaccumfaciens members. Results showed that the C. flaccumfaciens pv. poinsettiae strains causing bacterial canker of Euphorbia pulcherrima in the USA as well as the orange-/red-pigmented strains of C. flaccumfaciens pv. flaccumfaciens pathogenic on dry beans in Iran are too distinct from each other and from the type strain of the species to be considered members of C. flaccumfaciens. Hence, the latter two groups were elevated at the species level as C. poinsettiae sp. nov. (ATCC 9682T = CFBP 2403T = ICMP 2566T = LMG 3715T = NCPPB 854T as type strain), and C. aurantiacum sp. nov. (50RT = CFBP 8819T = ICMP 22071T as type strain). Within the emended species C. flaccumfaciens comb. nov., yellow-pigmented strains causing bacterial wilt of dry beans and those causing bacterial canker of Euphorbia pulcherrima in Europe were retained as C. flaccumfaciens pv. flaccumfaciens and C. flaccumfaciens pv. poinsettiae, respectively; while taxonomic position of the sugar beet pathogen C. flaccumfaciens pv. beticola ATCC BAA144PT was confirmed. The newly described onion pathogen C. allii was also reclassified as C. flaccumfaciens pv. allii with the pathotype strain LMG 32517PT. Furthermore, C. flaccumfaciens pv. basellae causing bacterial leaf spot of malabar spinach (Basella rubra) was transferred to C. citreum pv. basellae with ATCC BAA143PT as pathotype.


Assuntos
DNA Bacteriano , Filogenia , Doenças das Plantas , RNA Ribossômico 16S , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Irã (Geográfico) , Euphorbia/microbiologia , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Fabaceae/microbiologia , Fenótipo , Actinomycetaceae/classificação , Actinomycetaceae/genética , Actinomycetaceae/isolamento & purificação , Estados Unidos
7.
BMC Microbiol ; 13: 126, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23738754

RESUMO

BACKGROUND: Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial wilt and canker in tomato. Cmm is present nearly in all European countries. During the last three years several local outbreaks were detected in Belgium. The lack of a convenient high-resolution strain-typing method has hampered the study of the routes of transmission of Cmm and epidemiology in tomato cultivation. In this study the genetic relatedness among a worldwide collection of Cmm strains and their relatives was approached by gyrB and dnaA gene sequencing. Further, we developed and applied a multilocus variable number of tandem repeats analysis (MLVA) scheme to discriminate among Cmm strains. RESULTS: A phylogenetic analysis of gyrB and dnaA gene sequences of 56 Cmm strains demonstrated that Belgian Cmm strains from recent outbreaks of 2010-2012 form a genetically uniform group within the Cmm clade, and Cmm is phylogenetically distinct from other Clavibacter subspecies and from non-pathogenic Clavibacter-like strains. MLVA conducted with eight minisatellite loci detected 25 haplotypes within Cmm. All strains from Belgian outbreaks, isolated between 2010 and 2012, together with two French strains from 2010 seem to form one monomorphic group. Regardless of the isolation year, location or tomato cultivar, Belgian strains from recent outbreaks belonged to the same haplotype. On the contrary, strains from diverse geographical locations or isolated over longer periods of time formed mostly singletons. CONCLUSIONS: We hypothesise that the introduction might have originated from one lot of seeds or contaminated tomato seedlings that was the source of the outbreak in 2010 and that these Cmm strains persisted and induced infection in 2011 and 2012. Our results demonstrate that MLVA is a promising typing technique for a local surveillance and outbreaks investigation in epidemiological studies of Cmm.


Assuntos
Infecções por Actinomycetales/microbiologia , Actinomycetales/classificação , Actinomycetales/genética , Repetições Minissatélites , Tipagem Molecular/métodos , Doenças das Plantas/microbiologia , Actinomycetales/isolamento & purificação , Proteínas de Bactérias/genética , Bélgica , Análise por Conglomerados , DNA Girase/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Solanum lycopersicum , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
8.
Microb Biotechnol ; 15(6): 1762-1782, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35084112

RESUMO

Xanthomonas campestris pv. campestris (Xcc) is a vascular pathogen that invades the xylem of Brassica crops. Current chemical and antibiotics-based control measures for this bacterium are unsustainable and inefficient. After establishing a representative collection of Xcc strains, we isolated and characterized bacteriophages from two clades of phages to assess their potential in phage-based biocontrol. The most promising phages, FoX2 and FoX6, specifically recognize (lipo) polysaccharides, associated with the wxc gene cluster, on the surface of the bacterial cell wall. Next, we determined and optimized the applicability of FoX2 and FoX6 in an array of complementary bioassays, ranging from seed decontamination to irrigation- and spray-based applications. Here, an irrigation-based application showed promising results. In a final proof-of-concept, a CaCl2 -formulated phage cocktail was shown to control the outbreak of Xcc in the open field. This comprehensive approach illustrates the potential of phage biocontrol of black rot disease in Brassica and serves as a reference for the broader implementation of phage biocontrol in integrated pest management strategies.


Assuntos
Bacteriófagos , Brassica , Xanthomonas campestris , Brassica/genética , Brassica/microbiologia , Família Multigênica , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Xanthomonas campestris/genética
9.
Appl Environ Microbiol ; 77(10): 3443-50, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21421778

RESUMO

Pantoea agglomerans is a common soil bacterium used in the biocontrol of fungi and bacteria but is also an opportunistic human pathogen. It has been described extensively in this context, but knowledge of bacteriophages infecting this species is limited. Bacteriophages LIMEzero and LIMElight of P. agglomerans are lytic phages, isolated from soil samples, belonging to the Podoviridae and are the first Pantoea phages of this family to be described. The double-stranded DNA (dsDNA) genomes (43,032 bp and 44,546 bp, respectively) encode 57 and 55 open reading frames (ORFs). Based on the presence of an RNA polymerase in their genomes and their overall genome architecture, these phages should be classified in the subfamily of the Autographivirinae, within the genus of the "phiKMV-like viruses." Phylogenetic analysis of all the sequenced members of the Autographivirinae supports the classification of phages LIMElight and LIMEzero as members of the "phiKMV-like viruses" and corroborates the subdivision into the different genera. These data expand the knowledge of Pantoea phages and illustrate the wide host diversity of phages within the "phiKMV-like viruses."


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Pantoea/virologia , Podoviridae/classificação , Podoviridae/genética , Bacteriólise , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Análise por Conglomerados , DNA/genética , DNA Viral/genética , Ordem dos Genes , Microscopia Eletrônica , Fases de Leitura Aberta , Filogenia , Podoviridae/isolamento & purificação , Microbiologia do Solo , Vírion/ultraestrutura
10.
Syst Appl Microbiol ; 32(3): 211-25, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19157742

RESUMO

Bacterial midrib rot of greenhouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) is an emerging disease in Flanders (Belgium) and fluorescent pseudomonads are suspected to play an important role in the disease. Isolations from infected lettuces, collected from 14 commercial greenhouses in Flanders, yielded 149 isolates that were characterized polyphasically, which included morphological characteristics, pigmentation, pathogenicity tests by both injection and spraying of lettuce, LOPAT characteristics, FAME analysis, BOX-PCR fingerprinting, 16S rRNA and rpoB gene sequencing, as well as DNA-DNA hybridization. Ninety-eight isolates (66%) exhibited a fluorescent pigmentation and were associated with the genus Pseudomonas. Fifty-five of them induced an HR+ (hypersensitive reaction in tobacco leaves) response. The other 43 fluorescent isolates were most probably saprophytic bacteria and about half of them were able to cause rot on potato tuber slices. BOX-PCR genomic fingerprinting was used to assess the genetic diversity of the Pseudomonas midrib rot isolates. The delineated BOX-PCR patterns matched quite well with Pseudomonas morphotypes defined on the basis of colony appearance and variation in fluorescent pigmentation. 16S rRNA and rpoB gene sequence analyses allowed most of the fluorescent isolates to be allocated to Pseudomonas, and they belonged to either the Pseudomonas fluorescens group, Pseudomonas putida group, or the Pseudomonas cichorii/syringae group. In particular, the isolates allocated to this latter group constituted the vast majority of HR+ isolates and were identified as P. cichorii by DNA-DNA hybridization. They were demonstrated by spray-inoculation tests on greenhouse-grown lettuce to induce the midrib rot disease and could be re-isolated from lesions of inoculated plants. Four HR+ non-fluorescent isolates associated with one sample that showed an atypical midrib rot were identified as Dickeya sp.


Assuntos
Lactuca/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Técnicas de Tipagem Bacteriana , Bélgica , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/análise , RNA Polimerases Dirigidas por DNA/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase/métodos , Polissacarídeo-Liases/metabolismo , Pseudomonas/genética , Pseudomonas/fisiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Front Microbiol ; 7: 279, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014204

RESUMO

Pseudomonas syringae pv. porri, the causative agent of bacterial blight in leek (Allium porrum), is increasingly frequent causing problems in leek cultivation. Because of the current lack of control measures, novel bacteriophages were isolated to control this pathogen using phage therapy. Five novel phages were isolated from infected fields in Flanders (vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, vB_PsyM_KIL4, and vB_PsyM_KIL5), and were complemented with one selected host range mutant phage (vB_PsyM_KIL3b). Genome analysis of the phages revealed genome sizes between 90 and 94 kb and an average GC-content of 44.8%. Phylogenomic networking classified them into a novel clade, named the "KIL-like viruses," related to the Felixounalikevirus genus, together with phage phiPsa374 from P. syringae pv. actinidiae. In vitro characterization demonstrated the stability and lytic potential of these phages. Host range analysis confirmed heterogeneity within P. syringae pv. porri, leading to the development of a phage cocktail with a range that covers the entire set of 41 strains tested. Specific bio-assays demonstrated the in planta efficacy of phages vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, and vB_PsyM_KIL3b. In addition, two parallel field trial experiments on three locations using a phage cocktail of the six phages showed variable results. In one trial, symptom development was attenuated. These data suggest some potential for phage therapy in controlling bacterial blight of leek, pending optimization of formulation and application methods.

12.
Syst Appl Microbiol ; 36(6): 426-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23768656

RESUMO

Clavibacter michiganensis subsp. michiganensis (Cmm) is a seed-transmitted, quarantine pathogen which causes bacterial wilt and canker of tomato. Despite efforts to prevent seed contamination, new introductions are regularly detected, associated with new regions of tomato seed production. It seems as if the expanding diversity of Cmm also challenges the limited host range. Clavibacter-like isolates from tomato seed are phenotypically similar to Cmm in the common diagnostic semi-selective media and are identified as Cmm in the customary tests but are not pathogenic to tomato. In our first study four representatives formed a separate cluster in gyrB sequence analysis and in MALDI-TOF MS. Their presence on seed prevents clear judgment on the health status of tomato seeds. As their nature and function are unclear we aimed to investigate and compare them to Cmm. Twenty strains described as Clavibacter-like isolated from tomato seed and not pathogenic to tomato plantlets were selected. Leaf spots, wilting or cankers were not induced after local or systemic inoculation. Tomato stems were not colonized nor was there evidence of survival in tomato stems. Total DNA-DNA hybridization and sequence analysis of gyrB and dnaA proved that they belong to the Cm species but can be unambiguously separated from Cmm. Some of the genes encoding virulence determinants in Cmm strains were also detected in some of the non-pathogenic isolates. Moreover, Cmm strains formed a coherent group, while non-pathogenic Cm strains were heterogenic. The latter was confirmed by BOX-PCR. We speculate that tomato seeds likely represent a larger reservoir of unexplored Clavibacter diversity.


Assuntos
Actinomycetales/classificação , Actinomycetales/isolamento & purificação , Variação Genética , Sementes/microbiologia , Solanum lycopersicum/microbiologia , Actinomycetales/genética , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Girase/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Genótipo , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , Análise de Sequência de DNA
13.
Genome Announc ; 1(4)2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23887905

RESUMO

Dickeya dianthicola and "Dickeya solani" are currently the dominant bacterial pathogens of potatoes in Europe. Here, we present the draft genome sequences of four strains of each pathogen.

14.
PLoS One ; 7(5): e35738, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570692

RESUMO

Worldwide, Dickeya (formerly Erwinia chrysanthemi) is causing soft rot diseases on a large diversity of crops and ornamental plants. Strains affecting potato are mainly found in D. dadantii, D. dianthicola and D. zeae, which appear to have a marked geographical distribution. Furthermore, a few Dickeya isolates from potato are attributed to D. chrysanthemi and D. dieffenbachiae. In Europe, isolates of Erwinia chrysanthemi biovar 1 and biovar 7 from potato are now classified in D. dianthicola. However, in the past few years, a new Dickeya biovar 3 variant, tentatively named 'Dickeya solani', has emerged as a common major threat, in particular in seed potatoes. Sequences of a fliC gene fragment were used to generate a phylogeny of Dickeya reference strains from culture collections and with this reference backbone, to classify pectinolytic isolates, i.e. Dickeya spp. from potato and ornamental plants. The reference strains of the currently recognized Dickeya species and 'D. solani' were unambiguously delineated in the fliC phylogram. D. dadantii, D. dianthicola and 'D. solani' displayed unbranched clades, while D. chrysanthemi, D. zeae and D. dieffenbachiae branched into subclades and lineages. Moreover, Dickeya isolates from diagnostic samples, in particular biovar 3 isolates from greenhouse ornamentals, formed several new lineages. Most of these isolates were positioned between the clade of 'D. solani' and D. dadantii as transition variants. New lineages also appeared in D. dieffenbachiae and in D. zeae. The strains and isolates of D. dianthicola and 'D. solani' were differentiated by a fliC sequence useful for barcode identification. A fliC TaqMan®real-time PCR was developed for 'D. solani' and the assay was provisionally evaluated in direct analysis of diagnostic potato samples. This molecular tool can support the efforts to control this particular phytopathogen in seed potato certification.


Assuntos
Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Genes Bacterianos , Variação Genética , Filogenia , Solanum tuberosum/microbiologia , Enterobacteriaceae/isolamento & purificação , Europa (Continente) , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase
15.
PLoS One ; 7(3): e33227, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22413005

RESUMO

The bacterium 'Dickeya solani', an aggressive biovar 3 variant of Dickeya dianthicola, causes rotting and blackleg in potato. To control this pathogen using bacteriophage therapy, we isolated and characterized two closely related and specific bacteriophages, vB_DsoM_LIMEstone1 and vB_DsoM_LIMEstone2. The LIMEstone phages have a T4-related genome organization and share DNA similarity with Salmonella phage ViI. Microbiological and molecular characterization of the phages deemed them suitable and promising for use in phage therapy. The phages reduced disease incidence and severity on potato tubers in laboratory assays. In addition, in a field trial of potato tubers, when infected with 'Dickeya solani', the experimental phage treatment resulted in a higher yield. These results form the basis for the development of a bacteriophage-based biocontrol of potato plants and tubers as an alternative for the use of antibiotics.


Assuntos
Bacteriófago T4/fisiologia , Enterobacteriaceae/virologia , Doenças das Plantas/prevenção & controle , Solanum tuberosum/microbiologia , Bacteriófago T4/isolamento & purificação , Bacteriófago T4/ultraestrutura , Ordem dos Genes , Genoma Viral , Anotação de Sequência Molecular , Dados de Sequência Molecular
16.
Syst Appl Microbiol ; 34(6): 400-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21802235

RESUMO

The bacterial genus Clavibacter has only one species, Clavibacter michiganensis, containing five subspecies. All five are plant pathogens, among which three are recognized as quarantine pests (mentioned on the EPPO A2 list). Prevention of their introduction and epidemic outbreaks requires a reliable and accurate identification. Currently, identification of these bacteria is time consuming and often problematic, mainly because of cross-reactions with other plant-associated bacteria in immunological tests and false-negative results in PCR detection methods. Furthermore, distinguishing closely related subspecies is not straightforward. This study aimed at evaluating the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and a fragment of the gyrB sequence for the reliable and fast identification of the Clavibacter subspecies. Amplification and sequencing of gyrB using a single primer set had sufficient resolution and specificity to identify each subspecies based on both sequence similarities in cluster analyses and specific signatures within the sequences. All five subspecies also generated distinct and reproducible MALDI-TOF MS profiles, with unique and specific ion peaks for each subspecies, which could be used as biomarkers for identification. Results from both methods were in agreement and were able to distinguish the five Clavibacter subspecies from each other and from representatives of closely related Rathayibacter, Leifsonia or Curtobacterium species. Our study suggests that proteomic analysis using MALDI-TOF MS and gyrB sequence are powerful diagnostic tools for the accurate identification of Clavibacter plant pathogens.


Assuntos
DNA Girase/genética , Micrococcaceae/enzimologia , Micrococcaceae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Bases , DNA Girase/química , DNA Bacteriano/química , DNA Bacteriano/genética , Amplificação de Genes , Genes Bacterianos , Variação Genética , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA