Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 251(3): 58, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020353

RESUMO

MAIN CONCLUSION: pRbcS-T1 and pMALD1, two new trichome-specific promoters of Nicotiana tabacum, were identified and their strength and specificity were compared to those of previously described promoters in this species. Nicotiana tabacum has emerged as a suitable host for metabolic engineering of terpenoids and derivatives in tall glandular trichomes, which actively synthesize and secrete specialized metabolites. However, implementation of an entire biosynthetic pathway in glandular trichomes requires the identification of trichome-specific promoters to appropriately drive the expression of the transgenes needed to set up the desired pathway. In this context, RT-qPCR analysis was carried out on wild-type N. tabacum plants to compare the expression pattern and gene expression level of NtRbcS-T1 and NtMALD1, two newly identified genes expressed in glandular trichomes, with those of NtCYP71D16, NtCBTS2α, NtCPS2, and NtLTP1, which were reported in the literature to be specifically expressed in glandular trichomes. We show that NtRbcS-T1 and NtMALD1 are specifically expressed in glandular trichomes like NtCYP71D16, NtCBTS2α, and NtCPS2, while NtLTP1 is also expressed in other leaf tissues as well as in the stem. Transcriptional fusions of each of the six promoters to the GUS-VENUS reporter gene were introduced in N. tabacum by Agrobacterium-mediated transformation. Almost all transgenic lines displayed GUS activity in tall glandular trichomes, indicating that the appropriate cis regulatory elements were included in the selected promoter regions. However, unlike for the other promoters, no trichome-specific line was obtained for pNtLTP1:GUS-VENUS, in agreement with the RT-qPCR data. These data thus provide two new transcription promoters that could be used in metabolic engineering of glandular trichomes.


Assuntos
Nicotiana/genética , Regiões Promotoras Genéticas , Tricomas/genética , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos/genética , Folhas de Planta/genética , Caules de Planta/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Int J Antimicrob Agents ; 55(2): 105848, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31770623

RESUMO

Antibiotics with new modes of action that are active against intracellular forms of Staphylococcus aureus are sorely needed to fight recalcitrant infections caused by this bacterium. Afabicin desphosphono (Debio 1452, the active form of afabicin [Debio 1450]) is an inhibitor of FabI enoyl-Acyl carrier protein reductase and has specific and extremely potent activity against Staphylococci, including strains resistant to current antistaphylococcal agents. Using mouse J774 macrophages and human THP-1 monocytes, we showed that afabicin desphosphono: (i) accumulates rapidly in cells, reaching stable cellular-to-extracellular concentration ratios of about 30; (ii) is recovered entirely and free in the cell-soluble fraction (no evidence of stable association with proteins or other macromolecules). Afabicin desphosphono caused a maximum cfu decrease of about 2.5 log10 after incubation in broth for 30 h, including against strains resistant to vancomycin, daptomycin, and/or linezolid. Using a pharmacodynamic model of infected THP-1 monocytes (30 h of incubation post-phagocytosis), we showed that afabicin desphosphono is bacteriostatic (maximum cfu decrease: 0.56 to 0.73 log10) towards all strains tested, a behaviour shared with the comparators (vancomycin, daptomycin, and linezolid) when tested against susceptible strains. We conclude that afabicin desphosphono has a similar potential as vancomycin, daptomycin or linezolid to control the intracellular growth and survival of phagocytized S. aureus and remains fully active against strains resistant to these comparators.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/farmacocinética , Benzofuranos/farmacologia , Benzofuranos/farmacocinética , Ácidos Graxos/antagonistas & inibidores , Naftiridinas/farmacologia , Naftiridinas/farmacocinética , Fagocitose , Staphylococcus aureus/efeitos dos fármacos , Animais , Linhagem Celular , Células Cultivadas , Farmacorresistência Bacteriana , Ácidos Graxos/biossíntese , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA