Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(2): e1011410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394308

RESUMO

Musculoskeletal geometry and muscle volumes vary widely in the population and are intricately linked to the performance of tasks ranging from walking and running to jumping and sprinting. As an alternative to experimental approaches, where it is difficult to isolate factors and establish causal relationships, simulations can be used to independently vary musculoskeletal geometry and muscle volumes, and develop a fundamental understanding. However, our ability to understand how these parameters affect task performance has been limited due to the high computational cost of modelling the necessary complexity of the musculoskeletal system and solving the requisite multi-dimensional optimization problem. For example, sprinting and running are fundamental to many forms of sport, but past research on the relationships between musculoskeletal geometry, muscle volumes, and running performance has been limited to observational studies, which have not established cause-effect relationships, and simulation studies with simplified representations of musculoskeletal geometry. In this study, we developed a novel musculoskeletal simulator that is differentiable with respect to musculoskeletal geometry and muscle volumes. This simulator enabled us to find the optimal body segment dimensions and optimal distribution of added muscle volume for sprinting and marathon running. Our simulation results replicate experimental observations, such as increased muscle mass in sprinters, as well as a mass in the lower end of the healthy BMI range and a higher leg-length-to-height ratio in marathon runners. The simulations also reveal new relationships, for example showing that hip musculature is vital to both sprinting and marathon running. We found hip flexor and extensor moment arms were maximized to optimize sprint and marathon running performance, and hip muscles the main target when we simulated strength training for sprinters. Our simulation results provide insight to inspire future studies to examine optimal strength training. Our simulator can be extended to other athletic tasks, such as jumping, or to non-athletic applications, such as designing interventions to improve mobility in older adults or individuals with movement disorders.


Assuntos
Desempenho Atlético , Treinamento Resistido , Corrida , Humanos , Idoso , Corrida/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Desempenho Atlético/fisiologia
2.
PLoS Comput Biol ; 18(6): e1009338, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35675227

RESUMO

Optimal control simulations have shown that both musculoskeletal dynamics and physiological noise are important determinants of movement. However, due to the limited efficiency of available computational tools, deterministic simulations of movement focus on accurately modelling the musculoskeletal system while neglecting physiological noise, and stochastic simulations account for noise while simplifying the dynamics. We took advantage of recent approaches where stochastic optimal control problems are approximated using deterministic optimal control problems, which can be solved efficiently using direct collocation. We were thus able to extend predictions of stochastic optimal control as a theory of motor coordination to include muscle coordination and movement patterns emerging from non-linear musculoskeletal dynamics. In stochastic optimal control simulations of human standing balance, we demonstrated that the inclusion of muscle dynamics can predict muscle co-contraction as minimal effort strategy that complements sensorimotor feedback control in the presence of sensory noise. In simulations of reaching, we demonstrated that nonlinear multi-segment musculoskeletal dynamics enables complex perturbed and unperturbed reach trajectories under a variety of task conditions to be predicted. In both behaviors, we demonstrated how interactions between task constraint, sensory noise, and the intrinsic properties of muscle influence optimal muscle coordination patterns, including muscle co-contraction, and the resulting movement trajectories. Our approach enables a true minimum effort solution to be identified as task constraints, such as movement accuracy, can be explicitly imposed, rather than being approximated using penalty terms in the cost function. Our approximate stochastic optimal control framework predicts complex features, not captured by previous simulation approaches, providing a generalizable and valuable tool to study how musculoskeletal dynamics and physiological noise may alter neural control of movement in both healthy and pathological movements.


Assuntos
Movimento , Contração Muscular , Simulação por Computador , Humanos , Modelos Biológicos , Movimento/fisiologia , Contração Muscular/fisiologia , Músculos , Equilíbrio Postural/fisiologia
3.
J Neurophysiol ; 125(2): 586-598, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326357

RESUMO

Postural responses to similar perturbations of standing balance vary widely within and across subjects. Here, we identified two sources of variability and their interactions by combining experimental observations with computational modeling: differences in posture at perturbation onset across trials and differences in task-level goals across subjects. We first collected postural responses to unpredictable backward support-surface translations during standing in 10 young adults. We found that maximal trunk lean in postural responses to backward translations were highly variable both within subjects (mean of ranges = 28.3°) and across subjects (range of means = 39.9°). Initial center of mass (COM) position was correlated with maximal trunk lean during the response, but this relation was subject specific (R2 = 0.29-0.82). We then used predictive simulations to assess causal relations and interactions with task-level goal. Our simulations showed that initial posture explains the experimentally observed intrasubject variability with a more anterior initial COM position increasing the use of the hip strategy. Differences in task-level goal explain observed intersubject variability with prioritizing effort minimization leading to ankle strategies and prioritizing stability leading to hip strategies. Interactions between initial posture and task-level goal explain observed differences in intrasubject variability across subjects. Our findings suggest that variability in initial posture due to increased sway as observed in older adults might increase the occurrence of less stable postural responses to perturbations. Insight in factors causing movement variability will advance our ability to study the origin of differences between groups and conditions.NEW & NOTEWORTHY Responses to perturbations of standing balance vary both within and between individuals. By combining experimental observations with computational modeling, we identified causes of observed kinematic variability in healthy young adults. First, we found that trial-by-trial differences in posture at perturbation onset explain most of the kinematic variability observed within subjects. Second, we found that differences in prioritizing effort versus stability explained differences in the postural response as well as differences in trial-by-trial variability across subjects.


Assuntos
Variação Biológica da População , Equilíbrio Postural , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Posição Ortostática , Tronco/fisiologia
4.
IEEE Trans Biomed Eng ; 71(6): 1798-1809, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38206783

RESUMO

Secondary morphological and mechanical property changes in the muscle-tendon unit at the ankle joint are often observed in post-stroke individuals. These changes may alter the force generation capacity and affect daily activities such as locomotion. This work aimed to estimate subject-specific muscle-tendon parameters in individuals after stroke by solving the muscle redundancy problem using direct collocation optimal control methods based on experimental electromyography (EMG) signals and measured muscle fiber length. Subject-specific muscle-tendon parameters of the gastrocnemius, soleus, and tibialis anterior were estimated in seven post-stroke individuals and seven healthy controls. We found that the maximum isometric force, tendon stiffness and optimal fiber length in the post-stroke group were considerably lower than in the control group. We also computed the root mean square error between estimated and experimental values of muscle excitation and fiber length. The musculoskeletal model with estimated subject-specific muscle tendon parameters (from the muscle redundancy solver), yielded better muscle excitation and fiber length estimations than did scaled generic parameters. Our findings also showed that the muscle redundancy solver can estimate muscle-tendon parameters that produce force behavior in better accordance with the experimentally-measured value. These muscle-tendon parameters in the post-stroke individuals were physiologically meaningful and may shed light on treatment and/or rehabilitation planning.


Assuntos
Eletromiografia , Músculo Esquelético , Paresia , Acidente Vascular Cerebral , Tendões , Ultrassonografia , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiopatologia , Músculo Esquelético/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Tendões/diagnóstico por imagem , Tendões/fisiopatologia , Masculino , Pessoa de Meia-Idade , Paresia/fisiopatologia , Paresia/diagnóstico por imagem , Paresia/etiologia , Feminino , Ultrassonografia/métodos , Idoso , Processamento de Sinais Assistido por Computador
5.
Front Sports Act Living ; 3: 714555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746773

RESUMO

Both resistance training (RT) and perturbation-based training (PBT) have been proposed and applied as interventions to improve reactive balance performance in older adults. PBT is a promising approach but the adaptations in underlying balance-correcting mechanisms through which PBT improves reactive balance performance are not well-understood. Besides it is unclear whether PBT induces adaptations that generalize to movement tasks that were not part of the training and whether those potential improvements would be larger than improvements induced by RT. We performed two training interventions with two groups of healthy older adults: a traditional 12-week RT program and a 3-week PBT program consisting of support-surface perturbations of standing balance. Reactive balance performance during standing and walking as well as a set of neuro-muscular properties to quantify muscle strength, sensory and motor acuity, were assessed pre- and post-intervention. We found that both PBT and RT induced training specific improvements, i.e., standing PBT improved reactive balance during perturbed standing and RT increased strength, but neither intervention affected reactive balance performance during perturbed treadmill walking. Analysis of the reliance on different balance-correcting strategies indicated that specific improvements in the PBT group during reactive standing balance were due to adaptations in the stepping threshold. Our findings indicate that the strong specificity of PBT can present a challenge to transfer improvements to fall prevention and should be considered in the design of an intervention. Next, we found that lack of improvement in muscle strength did not limit improving reactive balance in healthy older adults. For improving our understanding of generalizability of specific PBT in future research, we suggest performing an analysis of the reliance on the different balance-correcting strategies during both the training and assessment tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA