Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Sci ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555999

RESUMO

A commonly encountered challenge with freeze-dried drug products is glass vial fogging. Fogging is characterized by a thin layer of product deposited upon the inner surface of the vial above the lyophilized cake. While considered to be a routine cosmetic defect in many instances, fogging around the shoulder and neck of the vial may potentially impact container closure integrity and reject rates during inspection. In this work, the influence of processing conditions i.e. vial pre-treatment, lyophilization cycle modifications and filling conditions on fogging was evaluated. A battery of analytical techniques was employed to investigate factors affecting glass vial fogging. A fogging score was used to quantify its severity in freeze-dried products. Additionally, a dye-based method was used to study solution upcreep (Marangoni flow) following product filling. Our lab-scale results indicate measurable improvement in fogging following the addition of an annealing step in the lyophilization cycle. Pre-freeze isothermal holding of the vials (at 5°C on the lyophilizer shelf) for an extended duration indicated a reduction in fogging whereas an increase in the freezing time exhibited no effect on fogging. Vial pre-treatment conditions were critical determinants of fogging for Type 1 vials whereas they had no impact on fogging in TopLyo® vials. The headspace relative humidity (RH) investigation also indicated sufficient increase in the water vapor pressure inside the vial to be conducive to the formulation of a hydration film - the precursor to Marangoni flow.

2.
J Pharm Sci ; 112(1): 138-147, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35667631

RESUMO

The succinic acid/succinate system has an excellent buffering capacity at acidic pH values (4.5-6.0), promising to be a buffer of choice for biologics having slightly acidic to basic isoelectric points (pI 6 - 9). However, its prevalence in drug products is limited due to the propensity (risk) of its components to crystallize during freezing and the consequent shift in the pH which might affect the product stability. Most of these previous assessments have been performed under operational conditions that do not simulate typical drug product processing conditions. In this work, we have characterized the physicochemical behavior of succinate formulations under representative pharmaceutical conditions. Our results indicate that the pH increases by ∼ 1.2 units in 25 mM and 250 mM succinate buffers at pharmaceutically relevant freezing conditions. X-ray diffractometry studies revealed selective crystallization of monosodium succinate, which is posed as the causative mechanism. This salt crystallization was not observed in the presence of 2% w/v sucrose, suggesting that this pH shift can be mitigated by including sucrose in the formulation. Additionally, three monoclonal antibodies (mAbs) that represent different IgG subtypes and span a range of pIs (5.9 - 8.8) were formulated with succinate and sucrose and subjected to freeze-thaw, frozen storage and lyophilization. No detrimental impact on quality attributes (QA) such as high molecular weight (HMW) species, turbidity, alteration in protein concentration and sub-visible particles, was observed of any of the mAbs tested. Lastly, drug formulations lyophilized in succinate buffer with sucrose demonstrated acceptable QA profiles upon accelerated kinetic storage stability, supporting the use of succinate buffers in mAb drug products.


Assuntos
Produtos Biológicos , Ácido Succínico , Ácido Succínico/química , Soluções Tampão , Concentração de Íons de Hidrogênio , Liofilização/métodos , Succinatos , Sacarose/química , Estabilidade de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA