RESUMO
Clathrin-mediated endocytosis is the major mechanism for eukaryotic plasma membrane-based proteome turn-over. In plants, clathrin-mediated endocytosis is essential for physiology and development, but the identification and organization of the machinery operating this process remains largely obscure. Here, we identified an eight-core-component protein complex, the TPLATE complex, essential for plant growth via its role as major adaptor module for clathrin-mediated endocytosis. This complex consists of evolutionarily unique proteins that associate closely with core endocytic elements. The TPLATE complex is recruited as dynamic foci at the plasma membrane preceding recruitment of adaptor protein complex 2, clathrin, and dynamin-related proteins. Reduced function of different complex components severely impaired internalization of assorted endocytic cargoes, demonstrating its pivotal role in clathrin-mediated endocytosis. Taken together, the TPLATE complex is an early endocytic module representing a unique evolutionary plant adaptation of the canonical eukaryotic pathway for clathrin-mediated endocytosis.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Clatrina/metabolismo , Endocitose , Complexo 2 de Proteínas Adaptadoras/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , Complexos Multiproteicos/metabolismoRESUMO
Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.
Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Prótons , Transdução de Sinais , Álcalis , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Ativação Enzimática , Proteínas F-Box/metabolismo , Concentração de Íons de Hidrogênio , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismoRESUMO
Protein activities depend heavily on protein complex formation and dynamic posttranslational modifications, such as phosphorylation. The dynamic nature of protein complex formation and posttranslational modifications is notoriously difficult to monitor in planta at cellular resolution, often requiring extensive optimization. Here, we generated and exploited the SYnthetic Multivalency in PLants (SYMPL)-vector set to assay protein-protein interactions (PPIs) (separation of phases-based protein interaction reporter) and kinase activities (separation of phases-based activity reporter of kinase) in planta, based on phase separation. This technology enabled easy detection of inducible, binary and ternary PPIs among cytoplasmic and nuclear proteins in plant cells via a robust image-based readout. Moreover, we applied the SYMPL toolbox to develop an in vivo reporter for SNF1-related kinase 1 activity, allowing us to visualize tissue-specific, dynamic SnRK1 activity in stable transgenic Arabidopsis (Arabidopsis thaliana) plants. The SYMPL cloning toolbox provides a means to explore PPIs, phosphorylation, and other posttranslational modifications with unprecedented ease and sensitivity.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosforilação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Processamento de Proteína Pós-Traducional , Plantas Geneticamente Modificadas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
Although strongly influenced by environmental conditions, lateral root (LR) positioning along the primary root appears to follow obediently an internal spacing mechanism dictated by auxin oscillations that prepattern the primary root, referred to as the root clock. Surprisingly, none of the hitherto characterized PIN- and ABCB-type auxin transporters seem to be involved in this LR prepatterning mechanism. Here, we characterize ABCB15, 16, 17, 18, and 22 (ABCB15-22) as novel auxin-transporting ABCBs. Knock-down and genome editing of this genetically linked group of ABCBs caused strongly reduced LR densities. These phenotypes were correlated with reduced amplitude, but not reduced frequency of the root clock oscillation. High-resolution auxin transport assays and tissue-specific silencing revealed contributions of ABCB15-22 to shootward auxin transport in the lateral root cap (LRC) and epidermis, thereby explaining the reduced auxin oscillation. Jointly, these data support a model in which LRC-derived auxin contributes to the root clock amplitude.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Ácidos Indolacéticos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Spatial distribution of the plant hormone auxin regulates multiple aspects of plant development. These self-regulating auxin gradients are established by the action of PIN auxin transporters, whose activity is regulated by their constitutive cycling between the plasma membrane and endosomes. Here, we show that auxin signaling by the auxin receptor AUXIN-BINDING PROTEIN 1 (ABP1) inhibits the clathrin-mediated internalization of PIN proteins. ABP1 acts as a positive factor in clathrin recruitment to the plasma membrane, thereby promoting endocytosis. Auxin binding to ABP1 interferes with this action and leads to the inhibition of clathrin-mediated endocytosis. Our study demonstrates that ABP1 mediates a nontranscriptional auxin signaling that regulates the evolutionarily conserved process of clathrin-mediated endocytosis and suggests that this signaling may be essential for the developmentally important feedback of auxin on its own transport.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Clatrina/metabolismo , Endocitose , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismoRESUMO
Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased PM integrity under multiple abiotic stresses, such as freezing, high salt, osmotic stress, and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild-type while the levels of most glycerolipid species remain unchanged. In addition, the SYT1-green fluorescent protein fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Diglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatos de Fosfatidilinositol/metabolismoRESUMO
The dynamic, differential distribution of the hormone auxin within plant tissues controls an impressive variety of developmental processes, which tailor plant growth and morphology to environmental conditions. Various environmental and endogenous signals can be integrated into changes in auxin distribution through their effects on local auxin biosynthesis and intercellular auxin transport. Individual cells interpret auxin largely by a nuclear signaling pathway that involves the F box protein TIR1 acting as an auxin receptor. Auxin-dependent TIR1 activity leads to ubiquitination-based degradation of transcriptional repressors and complex transcriptional reprogramming. Thus, auxin appears to be a versatile trigger of preprogrammed developmental changes in plant cells.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de SinaisRESUMO
Lateral root (LR) positioning and development rely on the dynamic interplay between auxin production, transport but also inactivation. Nonetheless, how the latter affects LR organogenesis remains largely uninvestigated. Here, we systematically analyze the impact of the major auxin inactivation pathway defined by GRETCHEN HAGEN3-type (GH3) auxin conjugating enzymes and DIOXYGENASE FOR AUXIN OXIDATION1 (DAO1) in all stages of LR development using reporters, genetics and inhibitors in Arabidopsis thaliana. Our data demonstrate that the gh3.1/2/3/4/5/6 hextuple (gh3hex) mutants display a higher LR density due to increased LR initiation and faster LR developmental progression, acting epistatically over dao1-1. Grafting and local inhibitor applications reveal that root and shoot GH3 activities control LR formation. The faster LR development in gh3hex is associated with GH3 expression domains in and around developing LRs. The increase in LR initiation is associated with accelerated auxin response oscillations coinciding with increases in apical meristem size and LR cap cell death rates. Our research reveals how GH3-mediated auxin inactivation attenuates LR development. Local GH3 expression in LR primordia attenuates development and emergence, whereas GH3 effects on pre-initiation stages are indirect, by modulating meristem activities that in turn coordinate root growth with LR spacing.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Meristema/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Upon exposure to light, etiolated Arabidopsis seedlings form adventitious roots (AR) along the hypocotyl. While processes underlying lateral root formation are studied intensively, comparatively little is known about the molecular processes involved in the initiation of hypocotyl AR. AR and LR formation were studied using a small molecule named Hypocotyl Specific Adventitious Root INducer (HYSPARIN) that strongly induces AR but not LR formation. HYSPARIN does not trigger rapid DR5-reporter activation, DII-Venus degradation or Ca2+ signalling. Transcriptome analysis, auxin signalling reporter lines and mutants show that HYSPARIN AR induction involves nuclear TIR1/AFB and plasma membrane TMK auxin signalling, as well as multiple downstream LR development genes (SHY2/IAA3, PUCHI, MAKR4 and GATA23). Comparison of the AR and LR induction transcriptome identified SAURs, AGC kinases and OFP transcription factors as specifically upregulated by HYSPARIN. Members of the SAUR19 subfamily, OFP4 and AGC2 suppress HYS-induced AR formation. While SAUR19 and OFP subfamily members also mildly modulate LR formation, AGC2 regulates only AR induction. Analysis of HYSPARIN-induced AR formation uncovers an evolutionary conservation of auxin signalling controlling LR and AR induction in Arabidopsis seedlings and identifies SAUR19, OFP4 and AGC2 kinase as novel regulators of AR formation.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Plântula , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismoRESUMO
Lateral root initiation requires the accumulation of auxin in lateral root founder cells, yielding a local auxin maximum. The positioning of auxin maxima along the primary root determines the density and spacing of lateral roots. The GOLVEN6 (GLV6) and GLV10 signaling peptides and their receptors have been established as regulators of lateral root spacing via their inhibitory effect on lateral root initiation in Arabidopsis. However, it was unclear how these GLV peptides interfere with auxin signaling or homeostasis. Here, we show that GLV6/10 signaling regulates the expression of a subset of auxin response genes, downstream of the canonical auxin signaling pathway, while simultaneously inhibiting the establishment of auxin maxima within xylem-pole pericycle cells that neighbor lateral root initiation sites. We present genetic evidence that this inhibitory effect relies on the activity of the PIN3 and PIN7 auxin export proteins. Furthermore, GLV6/10 peptide signaling was found to enhance PIN7 abundance in the plasma membranes of xylem-pole pericycle cells, which likely stimulates auxin efflux from these cells. Based on these findings, we propose a model in which the GLV6/10 signaling pathway serves as a negative feedback mechanism that contributes to the robust patterning of auxin maxima along the primary root.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Retroalimentação , Arabidopsis/metabolismo , Peptídeos/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Cyclic nucleotide-gated ion channels (CNGCs) have been firmly established as Ca2+-conducting ion channels that regulate a wide variety of physiological responses in plants. CNGC2 has been implicated in plant immunity and Ca2+ signaling due to the autoimmune phenotypes exhibited by null mutants of CNGC2 in Arabidopsis thaliana. However, cngc2 mutants display additional phenotypes that are unique among autoimmune mutants, suggesting that CNGC2 has functions beyond defense and generates distinct Ca2+ signals in response to different triggers. In this study, we found that cngc2 mutants showed reduced gravitropism, consistent with a defect in auxin signaling. This was mirrored in the diminished auxin response detected by the auxin reporters DR5::GUS and DII-VENUS and in a strongly impaired auxin-induced Ca2+ response. Moreover, the cngc2 mutant exhibits higher levels of the endogenous auxin indole-3-acetic acid, indicating that excess auxin in the cngc2 mutant causes its pleiotropic phenotypes. These auxin signaling defects and the autoimmunity syndrome of the cngc2 mutant could be suppressed by loss-of-function mutations in the auxin biosynthesis gene YUCCA6 (YUC6), as determined by identification of the cngc2 suppressor mutant repressor of cngc2 (rdd1) as an allele of YUC6. A loss-of-function mutation in the upstream auxin biosynthesis gene TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA1, WEAK ETHYLENE INSENSITIVE8) also suppressed the cngc2 phenotypes, further supporting the tight relationship between CNGC2 and the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS-YUCCA -dependent auxin biosynthesis pathway. Taking these results together, we propose that the Ca2+ signal generated by CNGC2 is a part of the negative feedback regulation of auxin homeostasis in which CNGC2 balances cellular auxin perception by influencing auxin biosynthesis.
Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Homeostase , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Transdução de Sinais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genéticaRESUMO
The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network, rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using total internal reflection fluorescence microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus, contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Endocitose/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Arabidopsis/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Ácidos Naftalenoacéticos/farmacologia , Transporte Proteico , Rede trans-Golgi/efeitos dos fármacosRESUMO
Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins, and auxin analogs. In this context, synthetic auxin analogs, such as 1-naphthalene acetic acid (1-NAA), are often favored over the endogenous auxin, indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven instrumental in revealing the various faces of auxin, they display in some cases bioactivities distinct from IAA. Here, we focused on the effect of auxin analogs on the accumulation of PIN proteins in brefeldin A-sensitive endosomal aggregations (BFA bodies), and correlation with the ability to elicit Ca2+ responses. For a set of commonly used auxin analogs, we evaluated if auxin analog-induced Ca2+ signaling inhibits PIN accumulation. Not all auxin analogs elicited a Ca2+ response, and their differential ability to elicit Ca2+ responses correlated partially with their ability to inhibit BFA-body formation. However, in tir1/afb and cngc14, 1-NAA-induced Ca2+ signaling was strongly impaired, yet 1-NAA still could inhibit PIN accumulation in BFA bodies. This demonstrates that TIR1/AFB-CNGC14-dependent Ca2+ signaling does not inhibit BFA body formation in Arabidopsis roots.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismoRESUMO
Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-TERMINALLY ENCODED PEPTIDE 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical, and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.
Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Peptídeos/metabolismo , Proteômica , Estresse Fisiológico , Adaptação Fisiológica/genética , Arabidopsis/genética , Transporte Biológico/genética , Secas , Regulação da Expressão Gênica de Plantas , Osmose , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/metabolismo , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética , Transcrição GênicaRESUMO
The interorganelle communication mediated by membrane contact sites (MCSs) is an evolutionary hallmark of eukaryotic cells. MCS connections enable the nonvesicular exchange of information between organelles and allow them to coordinate responses to changing cellular environments. In plants, the importance of MCS components in the responses to environmental stress has been widely established, but the molecular mechanisms regulating interorganelle connectivity during stress still remain opaque. In this report, we use the model plant Arabidopsis thaliana to show that ionic stress increases endoplasmic reticulum (ER)-plasma membrane (PM) connectivity by promoting the cortical expansion of synaptotagmin 1 (SYT1)-enriched ER-PM contact sites (S-EPCSs). We define differential roles for the cortical cytoskeleton in the regulation of S-EPCS dynamics and ER-PM connectivity, and we identify the accumulation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the PM as a molecular signal associated with the ER-PM connectivity changes. Our study highlights the functional conservation of EPCS components and PM phosphoinositides as modulators of ER-PM connectivity in eukaryotes, and uncovers unique aspects of the spatiotemporal regulation of ER-PM connectivity in plants.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatidilinositóis/metabolismo , Estresse Fisiológico/fisiologia , Sinaptotagmina I/metabolismo , Citoesqueleto/metabolismo , Eucariotos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismoRESUMO
The R2R3-MYB transcription factor FOUR LIPS (FLP) controls the stomatal terminal division through transcriptional repression of the cell cycle genes CYCLIN-DEPENDENT KINASE (CDK) B1s (CDKB1s), CDKA;1, and CYCLIN A2s (CYCA2s). We mutagenized the weak mutant allele flp-1 seeds with ethylmethane sulfonate and screened out a flp-1 suppressor 1 (fsp1) that suppressed the flp-1 stomatal cluster phenotype. FSP1 encodes RPA2a subunit of Replication Protein A (RPA) complexes that play important roles in DNA replication, recombination, and repair. Here, we show that FSP1/RPA2a functions together with CDKB1s and CYCA2s in restricting stomatal precursor proliferation, ensuring the stomatal terminal division and maintaining a normal guard-cell size and DNA content. Furthermore, we provide direct evidence for the existence of an evolutionarily conserved, but plant-specific, CDK-mediated RPA regulatory pathway. Serine-11 and Serine-21 at the N terminus of RPA2a are CDK phosphorylation target residues. The expression of the phosphorylation-mimic variant RPA2aS11,21/D partially complemented the defective cell division and DNA damage hypersensitivity in cdkb1;1 1;2 mutants. Thus, our study provides a mechanistic understanding of the CDK-mediated phosphorylation of RPA in the precise control of cell cycle and DNA repair in plants.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Estômatos de Plantas/metabolismo , Proteína de Replicação A/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Quinases Ciclina-Dependentes/genética , Reparo do DNA , Mutação , Fosforilação/genética , Proteína de Replicação A/genéticaRESUMO
Photomorphogenic responses of etiolated seedlings include the inhibition of hypocotyl elongation and opening of the apical hook. In addition, dark-grown seedlings respond to light by the formation of adventitious roots (AR) on the hypocotyl. How light signaling controls adventitious rooting is less well understood. Hereto, we analyzed adventitious rooting under different light conditions in wild type and photomorphogenesis mutants in Arabidopsis thaliana. Etiolation was not essential for AR formation but raised the competence to form AR under white and blue light. The blue light receptors CRY1 and PHOT1/PHOT2 are key elements contributing to the induction of AR formation in response to light. Furthermore, etiolation-controlled competence for AR formation depended on the COP9 signalosome, E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC (COP1), the COP1 interacting SUPPRESSOR OF PHYA-105 (SPA) kinase family members (SPA1,2 and 3) and Phytochrome-Interacting Factors (PIF). In contrast, ELONGATED HYPOCOTYL5 (HY5), suppressed AR formation. These findings provide a genetic framework that explains the high and low AR competence of Arabidopsis thaliana hypocotyls that were treated with dark, and light, respectively. We propose that light-induced auxin signal dissipation generates a transient auxin maximum that explains AR induction by a dark to light switch.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/farmacologia , Plântula/genética , Plântula/metabolismoRESUMO
Plant roots are specialized belowground organs that spatiotemporally shape their development in function of varying soil conditions. This root plasticity relies on intricate molecular networks driven by phytohormones, such as auxin and jasmonate (JA). Loss-of-function of the NOVEL INTERACTOR OF JAZ (NINJA), a core component of the JA signaling pathway, leads to enhanced triterpene biosynthesis, in particular of the thalianol gene cluster, in Arabidopsis thaliana roots. We have investigated the biological role of thalianol and its derivatives by focusing on Thalianol Synthase (THAS) and Thalianol Acyltransferase 2 (THAA2), two thalianol cluster genes that are upregulated in the roots of ninja mutant plants. THAS and THAA2 activity was investigated in yeast, and metabolite and phenotype profiling of thas and thaa2 loss-of-function plants was carried out. THAA2 was shown to be responsible for the acetylation of thalianol and its derivatives, both in yeast and in planta. In addition, THAS and THAA2 activity was shown to modulate root development. Our results indicate that the thalianol pathway is not only controlled by phytohormonal cues, but also may modulate phytohormonal action itself, thereby affecting root development and interaction with the environment.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Triterpenos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Oxilipinas , Raízes de Plantas/metabolismo , Transdução de SinaisRESUMO
Plants stand out among eukaryotes due to the large variety of sterols and sterol derivatives that they can produce. These metabolites not only serve as critical determinants of membrane structures, but also act as signaling molecules, as growth-regulating hormones, or as modulators of enzyme activities. Therefore, it is critical to understand the wiring of the biosynthetic pathways by which plants generate these distinct sterols, to allow their manipulation and to dissect their precise physiological roles. Here, we review the complexity and variation of the biosynthetic routes of the most abundant phytosterols and cholesterol in the green lineage and how different enzymes in these pathways are conserved and diverged from humans, yeast, and even bacteria. Many enzymatic steps show a deep evolutionary conservation, while others are executed by completely different enzymes. This has important implications for the use and specificity of available human and yeast sterol biosynthesis inhibitors in plants, and argues for the development of plant-tailored inhibitors of sterol biosynthesis.
Assuntos
Fitosteróis , Vias Biossintéticas , Colesterol , Fitosteróis/metabolismo , Plantas/genética , Plantas/metabolismo , EsteróisRESUMO
Many signal perception mechanisms are connected to Ca2+-based second messenger signaling to modulate specific cellular responses. The well-characterized plant hormone auxin elicits a very rapid Ca2+ signal. However, the cellular targets of auxin-induced Ca2+ are largely unknown. Here, we screened a biologically annotated chemical library for inhibitors of auxin-induced Ca2+ entry in plant cell suspensions to better understand the molecular mechanism of auxin-induced Ca2+ and to explore the physiological relevance of Ca2+ in auxin signal transduction. Using this approach, we defined a set of diverse, small molecules that interfere with auxin-induced Ca2+ entry. Based on annotated biological activities of the hit molecules, we found that auxin-induced Ca2+ signaling is, among others, highly sensitive to disruption of membrane proton gradients and the mammalian Ca2+ channel inhibitor bepridil. Whereas protonophores nonselectively inhibited auxin-induced and osmotic stress-induced Ca2+ signals, bepridil specifically inhibited auxin-induced Ca2+ We found evidence that bepridil severely alters vacuolar morphology and antagonized auxin-induced vacuolar remodeling. Further exploration of this plant-tailored collection of inhibitors will lead to a better understanding of auxin-induced Ca2+ entry and its relevance for auxin responses.