Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 416(2): 113175, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35487270

RESUMO

Niemann Pick type C is an inborn error of metabolism (IEM), classified as a lysosomal storage disease (LSD) caused by a dysfunction in NPC transport protein, that leads to intracellular accumulation of non-esterified cholesterol and other lipids. Clinical manifestations are ample, with visceral and neurological symptoms. Miglustat, a molecule that reversibly inhibits glucosylceramide synthase is used as treatment for this disorder. Studies demonstrated the influence of oxidative stress and inflammation in IEM, as well in animal model of NP-C disease. Nonetheless, literature lacks data on patients, so our work aimed to investigate if there is influence of chronic inflammation in the pathophysiology of NP-C disease, and the effect of miglustat, N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). We evaluated the plasmatic cytokines in NPC patients at diagnosis and during the treatment with miglustat. Additionally, we performed an in vitro study with antioxidants NAC (1 mM and 2.5 mM) and CoQ10 (5 µM and 10 µM), where we could verify its effect on inflammatory parameters, as well as in cholesterol accumulation. Our results showed that NP-C patients have higher plasmatic levels of pro and anti-inflammatory cytokines (IL-6, IL-8, and IL-10) at diagnosis and the treatment with miglustat was able to restore it. In vitro study showed that treatment with antioxidants in higher concentrations significantly decrease cholesterol accumulation, and NAC at 2.5 mM normalized the level of pro-inflammatory cytokines. Although the mechanism is not completely clear, it can be related to restoration in lipid traffic and decrease in oxidative stress caused by antioxidants.


Assuntos
Doença de Niemann-Pick Tipo C , 1-Desoxinojirimicina/análogos & derivados , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Colesterol , Citocinas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Ubiquinona/análogos & derivados
2.
Metab Brain Dis ; 38(2): 507-518, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36447062

RESUMO

Niemann-Pick C disease (NPC) is an autosomal recessive genetic disorder resulting from mutation in one of two cholesterol transport genes: NPC1 or NPC2, causing accumulation of unesterified cholesterol, together with glycosphingolipids, within the endosomal/lysosomal compartment of cells. The result is a severe disease in both multiple peripheral organs and the central nervous system, causing neurodegeneration and early death. However, the pathophysiological mechanisms of NPC1 remain poorly understood. Recent studies have shown that the primary lysosomal defect found in fibroblasts from NPC1 patients is accompanied by a deregulation of mitochondrial organization and function. There is currently no cure for NPC1, but recently the potential of ß-cyclodextrin (ß-CD) for the treatment of the disease was discovered, which resulted in the redistribution of cholesterol from subcellular compartments to the circulation and increased longevity in an animal model of NPC1. Considering the above, the present work evaluated the in vitro therapeutic potential of ß-CD to reduce cholesterol in fibroblasts from NPC1 patients. ß-CD was used in its free and nanoparticulate form. We also evaluated the ß-CD potential to restore mitochondrial functions, as well as the beneficial combined effects of treatment with antioxidants N-Acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). Besides, we evaluated oxidative and nitrative stress parameters in NPC1 patients. We showed that oxidative and nitrative stress could contribute to the pathophysiology of NPC1, as the levels of lipoperoxidation and the nitrite and nitrate levels were increased in these patients when compared to healthy individuals, as well as DNA damage. The nanoparticles containing ß-CD reduced the cholesterol accumulated in the NPC1 fibroblasts. This result was potentiated by the concomitant use of the nanoparticles with the antioxidants NAC and CoQ10 compared to those presented by healthy individuals cells ́. In addition, treatments combining ß-CD nanoparticles and antioxidants could reduce mitochondrial oxidative stress, demonstrating advantages compared to free ß-CD. The results obtained are promising regarding the combined use of ß-CD loaded nanoparticles and antioxidants in the treatment of NPC1 disease.


Assuntos
Doença de Niemann-Pick Tipo C , beta-Ciclodextrinas , Animais , Doença de Niemann-Pick Tipo C/genética , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , beta-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/uso terapêutico , beta-Ciclodextrinas/metabolismo , Oxirredução , Mitocôndrias/metabolismo , Colesterol/metabolismo
3.
Amino Acids ; 52(4): 629-638, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32246211

RESUMO

Hypermethioninemia is a disorder characterized by high plasma levels of methionine (Met) and its metabolites such as methionine sulfoxide (MetO). Studies have reported associated inflammatory complications, but the mechanisms involved in the pathophysiology of hypermethioninemia are still uncertain. The present study aims to evaluate the effect of chronic administration of Met and/or MetO on phenotypic characteristics of macrophages, in addition to oxidative stress, purinergic system, and inflammatory mediators in macrophages. In this study, Swiss male mice were subcutaneously injected with Met and MetO at concentrations of 0.35-1.2 g/kg body weight and 0.09-0.3 g/kg body weight, respectively, from the 10th-38th day post-birth, while the control group was treated with saline solution. The results revealed that Met and/or MetO induce an M1/classical activation phenotype associated with increased levels of tumor necrosis factor alpha and nitrite, and reduced arginase activity. It was also found that Met and/or MetO alter the activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, as well as the levels of thiol and reactive oxygen species in macrophages. The chronic administration of Met and/or MetO also promotes alteration in the hydrolysis of ATP and ADP, as indicated by the increased activity of ectonucleotidases. These results demonstrate that chronic administration of Met and/or MetO promotes activated pro-inflammatory profile by inducing M1/classical macrophage polarization. Thus, the changes in redox status and purinergic system upon chronic Met and/or MetO exposure may contribute towards better understanding of the alterations consistent with hypermethioninemic patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/imunologia , Glicina N-Metiltransferase/deficiência , Macrófagos/imunologia , Metionina/análogos & derivados , Animais , Catalase/metabolismo , Polaridade Celular , Glutationa Peroxidase/metabolismo , Glicina N-Metiltransferase/imunologia , Macrófagos/efeitos dos fármacos , Masculino , Metionina/administração & dosagem , Metionina/metabolismo , Metionina/farmacologia , Camundongos , Oxirredução , Estresse Oxidativo , Fenótipo , Superóxido Dismutase/metabolismo
4.
J Inherit Metab Dis ; 43(3): 586-601, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943253

RESUMO

ß-Cyclodextrin (ß-CD) is being considered a promising therapy for Niemann-Pick C (NPC) disease because of its ability to mobilise the entrapped cholesterol from lysosomes, however, a major limitation is its inability to cross the blood-brain barrier (BBB) and address the central nervous system (CNS) manifestations of the disease. Considering this, we aimed to design nanoparticles able to cross the BBB and deliver ß-CD into the CNS lysosomes. The physicochemical characteristics of ß-CD-loaded nanoparticles were evaluated by dynamic light scattering, small-angle X-ray scattering, and cryogenic transmission electron microscopy. The in vitro analyses were performed with NPC dermal fibroblasts and the ß-CD-loaded nanoparticles were tracked in vivo. The nanoparticles showed a mean diameter around 120 nm with a disordered bicontinuous inner structure. The nanoparticles did not cause decrease in cell viability, impairment in the antioxidant enzymes activity, damage to biomolecules or release of reactive species in NPC dermal fibroblasts; also, they did not induce genotoxicity or alter the mitochondrial function in healthy fibroblasts. The ß-CD-loaded nanoparticles were taken up by lysosomes reducing the cholesterol accumulated in NPC fibroblasts and reached the CNS of mice more intensely than other organs, demonstrating advantages compared to the free ß-CD. The results demonstrated the potential of the ß-CD-loaded nanoparticles in reducing the brain impairment of NPC.


Assuntos
Colesterol/metabolismo , Nanopartículas/administração & dosagem , Doença de Niemann-Pick Tipo C/tratamento farmacológico , beta-Ciclodextrinas/administração & dosagem , Animais , Transporte Biológico , Estudos de Casos e Controles , Criança , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Doença de Niemann-Pick Tipo C/metabolismo , beta-Ciclodextrinas/farmacologia
5.
Genet Mol Biol ; 43(3): 20190298, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32706845

RESUMO

Citrullinemia type 1 (CTLNI), long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), and mut0 methylmalonic acidemia (mut0 MMA) are inborn errors of metabolism (IEMs) associated with sudden unexpected death in infancy (SUDI). Its most common pathogenic variants are: c.1168G>A (CTLNI, ASS1 gene), c.1528G>C (LCHADD, HADHA gene), c.655A>T and c.1106G>A (mut0 MMA, MUT gene). Considering the absence of estimates regarding the incidence of these diseases in Brazil, this study sought to investigate the prevalence of its main pathogenic variants in a healthy population in the southern region of the country. A total of 1,000 healthy subjects from Rio Grande do Sul were included. Genotyping was performed by real-time PCR. Individuals found to be heterozygous for c.1528G>C underwent further acylcarnitine profile analysis by tandem mass spectrophotometry. Allele and genotype frequencies were calculated considering Hardy-Weinberg equilibrium. The c.1528G>C variant was detected in heterozygosity in two subjects (carrier frequency = 1:500; allele frequency = 0.001; minimum prevalence of LCHADD = 1: 1,000,000), whose acylcarnitine profiles were normal. Variants c.1168G>A, c.655A>T, and c.1106G>A were not identified. These results denote the rarity of these IEMs in Southern Brazil, highlighting the need to expand the investigation of IEMs in relation to infant morbidity and mortality within the country.

6.
An Acad Bras Cienc ; 91(2): e20181373, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31241709

RESUMO

Fabry disease (FD) is an X-linked inherited disease and occurs due to mutations in GLA gene that encodes the α-galactosidase enzyme. Consequently, there is an accumulation of enzyme substrates, namely globotriaosylceramide (GB3). FD is a multisystemic disease, caused by storage of GB3 in vascular endothelia, with significant renal, cardiac and vascular involvement. The aim of this work was to evaluate the in vitro effect of GB3 on electron transport chain complexes (ETC) and redox parameters. Biochemical biomarkers were determined in homogenates of cerebral cortex, kidneys and liver of Wistar rats in the presence or absence of GB3 at concentrations of 3, 6, 9 and 12 mg/L. We found that GB3 caused an increase of ETC complexes II and IV activities, increased production of reactive species and decreased superoxide dismutase enzyme activity in homogenates of cerebral cortex. As well also increased production of reactive species and superoxide dismutase activity in kidney homogenates. The results obtained in our work suggest that GB3 interferes in ETC complexes II and IV activities, however, the magnitude of this increase seems to be too low to present a physiologically importance. However, the imbalance in cellular redox state indicating that these alterations may be involved in the pathophysiology of FD, mainly in renal and cerebral manifestations.


Assuntos
Córtex Cerebral/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Doença de Fabry/metabolismo , Rim/metabolismo , Fígado/metabolismo , Oxirredução/efeitos dos fármacos , Triexosilceramidas/farmacologia , Animais , Modelos Animais de Doenças , Doença de Fabry/enzimologia , Masculino , Ratos , Ratos Wistar
7.
Genet Mol Biol ; 42(1 suppl 1): 178-185, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30985856

RESUMO

Organic acidurias and aminoacidopathies are groups of frequent inborn errors of metabolism (IEMs), which are caused by mutations in specific genes that lead to loss of protein/enzyme or transport function with important deleterious effects to cell metabolism. Since a considerable number of such disorders are potentially treatable when diagnosed at an early stage of life, diagnosis is crucial for the patients. In the present report, we describe symptomatic individuals referred to our service that were diagnosed with these disorders from 2006 to 2016. We used blood and urine samples from 21,800 patients suspected of aminoacidopathies or organic acidemias that were processed by the analytical techniques reverse phase high-performance liquid chromatography for amino acid quantification and gas chromatography coupled to mass spectrometry for organic acid detection. Analysis of dried blood spots by liquid chromatography-tandem mass spectrometry was used in some cases. We detected 258 cases of organic acidurias, and 117 patients with aminoacidopathies were diagnosed. Once diagnosis was performed, patients were promptly submitted to the available treatments with clear reduction of mortality and morbidity. The obtained data may help pediatricians and metabolic geneticists to become aware of these diseases and possibly expand newborn screening programs in the future.

8.
Cell Mol Neurobiol ; 38(8): 1505-1516, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30302628

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder caused by disfunction of the ABCD1 gene, which encodes a peroxisomal protein responsible for the transport of the very long-chain fatty acids from the cytosol into the peroxisome, to undergo ß-oxidation. The mainly accumulated saturated fatty acids are hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in tissues and body fluids. This peroxisomal disorder occurs in at least 1 out of 20,000 births. Considering that pathophysiology of this disease is not well characterized yet, and glial cells are widely used in studies of protective mechanisms against neuronal oxidative stress, we investigated oxidative damages and inflammatory effects of vesicles containing lecithin and C26:0, as well as the protection conferred by N-acetyl-L-cysteine (NAC), trolox (TRO), and rosuvastatin (RSV) was assessed. It was verified that glial cells exposed to C26:0 presented oxidative DNA damage (measured by comet assay and endonuclease III repair enzyme), enzymatic oxidative imbalance (high catalase activity), nitrative stress [increased nitric oxide (NO) levels], inflammation [high Interleukin-1beta (IL-1ß) levels], and induced lipid peroxidation (increased isoprostane levels) compared to native glial cells without C26:0 exposure. Furthermore, NAC, TRO, and RSV were capable to mitigate some damages caused by the C26:0 in glial cells. The present work yields experimental evidence that inflammation, oxidative, and nitrative stress may be induced by hexacosanoic acid, the main accumulated metabolite in X-ALD, and that antioxidants might be considered as an adjuvant therapy for this severe neurometabolic disease.


Assuntos
Acetilcisteína/farmacologia , Cromanos/farmacologia , Ácidos Graxos/farmacologia , Inflamação/patologia , Neuroglia/patologia , Estresse Nitrosativo , Estresse Oxidativo , Rosuvastatina Cálcica/farmacologia , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Dano ao DNA , Interleucina-1beta/metabolismo , Isoprostanos/metabolismo , Neuroglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Nitratos/metabolismo , Nitritos/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
9.
Metab Brain Dis ; 30(4): 925-33, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25600689

RESUMO

The pathogenesis and the progression of phenylketonuria (PKU), an inborn error of phenylalanine (Phe) metabolism, have been associated with oxidative damage. Moreover, it has been increasingly postulated the antioxidant properties of L-Carnitine (LC). The aim of this study was to verify the effect of LC on Phe-induced DNA damage. The in vitro effect of different concentrations of LC (15, 30, 120 and 150 µM) on DNA damage-induced by high phenylalanine levels (1000 and 2500 µM) was examined in white blood cells from normal individuals using the comet assay. Urinary 8-hydroxydeoguanosine (8-OHdG) levels, a biomarker of oxidative DNA damage, and plasmatic sulfhydryl content were measured in eight patients with classical PKU, under therapy with protein restriction and supplemented with a special formula containing LC, and in controls individuals. Both in vitro tested Phe concentrations (1000 and 2500 µM) have resulted in DNA damage index significantly higher than control group. The in vitro co-treatment with Phe and LC reduced significantly DNA damage index when compared to Phe group. The urinary excretion of 8-OHdG and plasmatic sulfhydryl content presented similar levels in both groups analyzed (controls and treated PKU patients). In treated PKU patients, urinary 8-OHdG levels were positively correlated with blood Phe levels and negatively correlated with blood LC concentration and plasmatic sulfhydryl content. The present work yields experimental evidence that LC can reduce the in vitro DNA injury induced by high concentrations of phenylalanine, as well as, allow to hypothesize that LC protect against DNA damage in patients with PKU.


Assuntos
Carnitina/farmacologia , Dano ao DNA/efeitos dos fármacos , Suplementos Nutricionais , Fenilalanina/toxicidade , Adolescente , Carnitina/uso terapêutico , Dano ao DNA/fisiologia , Feminino , Humanos , Masculino , Fenilcetonúrias/sangue , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/urina , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Adulto Jovem
10.
Cell Mol Neurobiol ; 34(2): 157-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24220995

RESUMO

Maple syrup urine disease (MSUD) is a metabolic disease caused by a deficiency in the branched-chain α-keto acid dehydrogenase complex, leading to the accumulation of branched-chain keto acids and their corresponding branched-chain amino acids (BCAA) in patients. Treatment involves protein-restricted diet and the supplementation with a specific formula containing essential amino acids (except BCAA) and micronutrients, in order to avoid the appearance of neurological symptoms. Although the accumulation of toxic metabolites is associated to appearance of symptoms, the mechanisms underlying the brain damage in MSUD remain unclear, and new evidence has emerged indicating that oxidative stress contributes to this damage. In this context, this review addresses some of the recent findings obtained from cells lines, animal studies, and from patients indicating that oxidative stress is an important determinant of the pathophysiology of MSUD. Recent works have shown that the metabolites accumulated in the disease induce morphological alterations in C6 glioma cells through nitrogen reactive species generation. In addition, several works demonstrated that the levels of important antioxidants decrease in animal models and also in MSUD patients (what have been attributed to protein-restricted diets). Also, markers of lipid, protein, and DNA oxidative damage have been reported in MSUD, probably secondary to the high production of free radicals. Considering these findings, it is well-established that oxidative stress contributes to brain damage in MSUD, and this review offers new perspectives for the prevention of the neurological damage in MSUD, which may include the use of appropriate antioxidants as a novel adjuvant therapy for patients.


Assuntos
Doença da Urina de Xarope de Bordo/patologia , Sistema Nervoso/patologia , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Radicais Livres/metabolismo , Humanos
11.
J Inherit Metab Dis ; 37(5): 783-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24623196

RESUMO

The objective of this study was to test whether macromolecule oxidative damage and altered enzymatic antioxidative defenses occur in patients with medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency. We performed a cross-sectional observational study of in vivo parameters of lipid and protein oxidative damage and antioxidant defenses in asymptomatic, nonstressed, MCAD-deficient patients and healthy controls. Patients were subdivided into three groups based on therapy: patients without prescribed supplementation, patients with carnitine supplementation, and patients with carnitine plus riboflavin supplementation. Compared with healthy controls, nonsupplemented MCAD-deficient patients and patients receiving carnitine supplementation displayed decreased plasma sulfhydryl content (indicating protein oxidative damage). Increased erythrocyte superoxide dismutase (SOD) activity in patients receiving carnitine supplementation probably reflects a compensatory mechanism for scavenging reactive species formation. The combination of carnitine plus riboflavin was not associated with oxidative damage. These are the first indications that MCAD-deficient patients experience protein oxidative damage and that combined supplementation of carnitine and riboflavin may prevent these biochemical alterations. Results suggest involvement of free radicals in the pathophysiology of MCAD deficiency. The underlying mechanisms behind the increased SOD activity upon carnitine supplementation need to be determined. Further studies are necessary to determine the clinical relevance of oxidative stress, including the possibility of antioxidant therapy.


Assuntos
Acil-CoA Desidrogenase/deficiência , Antioxidantes/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Estresse Oxidativo , Proteínas/metabolismo , Acil-CoA Desidrogenase/metabolismo , Adolescente , Adulto , Carnitina/uso terapêutico , Criança , Pré-Escolar , Estudos Transversais , Eritrócitos/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Metabolismo dos Lipídeos/genética , Masculino , Riboflavina/uso terapêutico , Vitaminas/uso terapêutico , Adulto Jovem
13.
Biochim Biophys Acta ; 1822(2): 226-32, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22085605

RESUMO

Fabry disease is an X-linked inborn error of glycosphingolipid catabolism due to deficient activity of α-galactosidase A that leads to accumulation of the enzyme substrates, mainly globotriaosylceramide (Gb3), in body fluids and lysosomes of many cell types. Some pathophysiology hypotheses are intimately linked to reactive species production and inflammation, but until this moment there is no in vivo study about it. Hence, the aim of this study was to investigate oxidative stress parameters, pro-inflammatory cytokines and Gb3 levels in Fabry patients under treatment with enzyme replacement therapy (ERT) and finally to establish a possible relation between them. We analyzed urine and blood samples of patients under ERT (n=14) and healthy age-matched controls (n=14). Patients presented decreased levels of antioxidant defenses, assessed by reduced glutathione (GSH), glutathione peroxidase (GPx) activity and increased superoxide dismutase/catalase (SOD/CAT) ratio in erythrocytes. Concerning to the damage to biomolecules (lipids and proteins), we found that plasma levels of malondialdehyde (MDA) and protein carbonyl groups and di-tyrosine (di-Tyr) in urine were increased in patients. The pro-inflammatory cytokines IL-6 and TNF-α were also increased in patients. Urinary Gb3 levels were positively correlated with the plasma levels of IL-6, carbonyl groups and MDA. IL-6 levels were directly correlated with di-Tyr and inversely correlated with GPx activity. This data suggest that pro-inflammatory and pro-oxidant states occur, are correlated and seem to be induced by Gb3 in Fabry patients.


Assuntos
Terapia de Reposição de Enzimas , Doença de Fabry/tratamento farmacológico , Doença de Fabry/metabolismo , Estresse Oxidativo/fisiologia , Triexosilceramidas/metabolismo , Adulto , Antioxidantes/metabolismo , Catalase/sangue , Catalase/metabolismo , Eritrócitos/enzimologia , Eritrócitos/metabolismo , Doença de Fabry/patologia , Doença de Fabry/urina , Feminino , Glutationa/metabolismo , Glutationa Peroxidase/sangue , Glutationa Peroxidase/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/urina , Interleucina-6/sangue , Interleucina-6/metabolismo , Masculino , Malondialdeído/sangue , Malondialdeído/metabolismo , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/sangue , Superóxido Dismutase/metabolismo , Triexosilceramidas/urina , Fator de Necrose Tumoral alfa/metabolismo , Tirosina/metabolismo , Adulto Jovem , alfa-Galactosidase/metabolismo
14.
Naunyn Schmiedebergs Arch Pharmacol ; 396(7): 1563-1569, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36795166

RESUMO

Niemann-Pick type C1 (NP-C1) is a lysosomal storage disease (LSD) caused by mutations in NPC1 gene that lead to defective synthesis of the respective lysosomal transporter protein and cholesterol accumulation in late endosomes/lysosomes (LE/L) compartments, as well as glycosphingolipids GM2 and GM3 in the central nervous system (CNS). Clinical presentation varies according to the age of onset and includes visceral and neurological symptoms, such as hepatosplenomegaly and psychiatric disorders. Studies have been associating the pathophysiology of NP-C1 with oxidative damage to lipids and proteins, as well as evaluating the benefits of adjuvant therapy with antioxidants for this disease. In this work, we evaluated the DNA damage in fibroblasts culture from patients with NP-C1 treated with miglustat, as well as the in vitro effect of the antioxidant compounds N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10), using the alkaline comet assay. Our preliminary results demonstrate that NP-C1 patients have increased DNA damage compared to healthy individuals and that the treatments with antioxidants can mitigate it. DNA damage may be due to an increase in reactive species since it has been described that NP-C1 patients have increased peripheral markers of damage to other biomolecules. Our study suggests that NP-C1 patients could benefit from the use of adjuvant therapy with NAC and CoQ10, which should be better evaluated in a future clinical trial.


Assuntos
Doença de Niemann-Pick Tipo C , Humanos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Dano ao DNA
15.
Mol Genet Metab ; 106(2): 231-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22525090

RESUMO

Oxidative stress plays an important role in the pathophysiology of neurodegenerative diseases, including X-linked adrenoleukodystrophy (X-ALD). In the present work, we evaluated lipid (malondialdehyde [MDA] content) and protein (sulfhydryl and carbonyl contents) oxidative damage parameters in plasma from X-ALD patients before and after bone marrow transplant (BMT), in order to verify if this treatment is capable to alter the oxidative parameters studied. We also evaluated the plasma concentration of hexacosanoic acid (C26:0) from X-ALD patients and correlated it with the oxidative damage parameters investigated. We observed that MDA content was significantly increased in plasma of X-ALD patients before BMT and after BMT when compared to controls, and that it was significantly reduced in plasma of X-ALD after BMT when compared to the before BMT group. These results indicate that lipid peroxidation is stimulated in X-ALD patients but there is a significant reduction of lipid peroxidation after BMT. Next, we observed a significant reduction of sulfhydryl content in plasma of X-ALD patients before BMT compared to controls indicating protein oxidative damage and that this measurement was increased in these patients after BMT as compared to before BMT. We found no significant differences in plasma carbonyl content in X-ALD patients before and after BMT as compared to controls. However, we observed a significant reduction in this parameter in X-ALD patients after BMT compared to before BMT. Finally, C26:0 plasma concentration was significantly reduced in X-ALD patients after BMT when compared to before BMT. We found no significant correlations between MDA and carbonyl values with C26:0 levels of the patients before BMT and after BMT, but a significant inverse correlation between sulfhydryl content and C26:0 levels was detected. In conclusion, the present study reinforces the hypothesis that lipid peroxidation and protein damage are induced in plasma of X-ALD patients and, in addition, demonstrates that BMT treatment is capable to reduce this pathogenic process. Taken together, the data obtained from plasma of X-ALD patients before and after BMT showing induction and protection, respectively, of oxidative stress, allowed to suggest that BMT, when well succeeded and under the recommendations, is effective to reduce C26:0 plasma levels and the increased lipid and protein oxidative damage in X-ALD.


Assuntos
Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/terapia , Transplante de Medula Óssea , Estresse Oxidativo , Adolescente , Proteínas Sanguíneas/metabolismo , Criança , Pré-Escolar , Humanos , Masculino , Malondialdeído/sangue , Compostos de Sulfidrila/sangue
16.
Cell Mol Neurobiol ; 32(1): 77-82, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21833551

RESUMO

Propionic (PA) and methylmalonic (MMA) acidurias are inherited disorders caused by deficiency of propionyl-CoA carboxylase and methylmalonyl-CoA mutase, respectively. Affected patients present acute metabolic crises in the neonatal period and long-term neurological deficits. Treatments of these diseases include a protein restricted diet and L: -carnitine supplementation. L: -Carnitine is widely used in the therapy of these diseases to prevent secondary L: -carnitine deficiency and promote detoxification, and several recent in vitro and in vivo studies have reported antioxidant and antiperoxidative effects of this compound. In this study, we evaluated the oxidative stress parameters, isoprostane and di-tyrosine levels, and the antioxidant capacity, in urine from patients with PA and MMA at the diagnosis, and during treatment with L: -carnitine and protein-restricted diet. We verified a significant increase of isoprostanes and di-tyrosine, as well as a significant reduction of the antioxidant capacity in urine from these patients at diagnosis, as compared to controls. Furthermore, treated patients presented a marked reduction of isoprostanes and di-tyrosine levels in relation to untreated patients. In addition, patients with higher levels of protein and lipid oxidative damage, determined by di-tyrosine and isoprostanes levels, also presented lower urinary concentrations of total and free L: -carnitine. In conclusion, the present results indicate that treatment with low protein diet and L: -carnitine significantly reduces urinary biomarkers of protein and lipid oxidative damage in patients with disorders of propionate metabolism and that L: -carnitine supplementation may be specially involved in this protection.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/dietoterapia , Erros Inatos do Metabolismo dos Aminoácidos/urina , Carnitina/uso terapêutico , Estresse Oxidativo/fisiologia , Propionatos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Carnitina/administração & dosagem , Carnitina/análise , Carnitina/urina , Criança , Pré-Escolar , Dieta com Restrição de Proteínas , Suplementos Nutricionais , Humanos , Lactente , Recém-Nascido , Análise por Pareamento , Ácido Metilmalônico/metabolismo , Ácido Metilmalônico/urina , Estresse Oxidativo/efeitos dos fármacos , Propionatos/urina , Resultado do Tratamento , Tirosina/análise , Tirosina/urina
17.
Mol Genet Metab ; 103(2): 121-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21420339

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficiency of the enzyme iduronate-2-sulfatase, responsible for the degradation of glycosaminoglycans dermatan and heparan sulfate. Once the generation of free radicals is involved in the pathogenesis of many diseases, including some inborn errors of metabolism, the aim of this study was to evaluate blood oxidative stress parameters in MPS II patients, before and during 6 months of enzyme replacement therapy. We found significantly increased levels of malondialdehyde and carbonyl groups in plasma as well as erythrocyte catalase activity in patients before treatment compared to the control group. Plasma sulfhydryl group content and total antioxidant status were significantly reduced before treatment, while superoxide dismutase enzyme was not altered at this time when compared to controls. During enzyme replacement therapy, there was a significant reduction in levels of malondialdehyde when compared to pretreatment. Sulfhydryl groups were significantly increased until three months of treatment in MPS II patients in comparison to pretreatment. There were no significant alterations in plasma total antioxidant status and carbonyl groups as well as in catalase and superoxide dismutase activities during treatment in relation to pretreatment. The results indicate that MPS II patients are subject to lipid and protein oxidative damage and present reduction in non-enzymatic antioxidants, suggesting a possible involvement of free radicals in the pathophysiology of this disease. Also, the results may suggest that enzyme replacement therapy seems to protect against lipid peroxidation and protein damage in these patients.


Assuntos
Terapia de Reposição de Enzimas , Iduronato Sulfatase/uso terapêutico , Mucopolissacaridose II/enzimologia , Mucopolissacaridose II/terapia , Estresse Oxidativo , Antioxidantes/metabolismo , Catalase/metabolismo , Criança , Pré-Escolar , Eritrócitos/enzimologia , Humanos , Lactente , Masculino , Malondialdeído/sangue , Superóxido Dismutase/metabolismo
18.
Cell Mol Neurobiol ; 31(5): 653-62, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21516352

RESUMO

Phenylketonuria (PKU) is an inborn error of amino acid metabolism caused by severe deficiency of phenylalanine hydroxylase activity, leading to the accumulation of phenylalanine and its metabolites in blood and tissues of affected patients. Phenylketonuric patients present as the major clinical feature mental retardation, whose pathomechanisms are poorly understood. In recent years, mounting evidence has emerged indicating that oxidative stress is possibly involved in the pathology of PKU. This article addresses some of the recent developments obtained from animal studies and from phenylketonuric patients indicating that oxidative stress may represent an important element in the pathophysiology of PKU. Several studies have shown that enzymatic and non-enzymatic antioxidant defenses are decreased in plasma and erythrocytes of PKU patients, which may be due to an increased free radical generation or secondary to the deprivation of micronutrients which are essential for these defenses. Indeed, markers of lipid, protein, and DNA oxidative damage have been reported in PKU patients, implying that reactive species production is increased in this disorder. A considerable set of data from in vitro and in vivo animal studies have shown that phenylalanine and/or its metabolites elicit reactive species in brain rodent. These findings point to a disruption of pro-oxidant/antioxidant balance in PKU. Considering that the brain is particularly vulnerable to oxidative attack, it is presumed that the administration of appropriate antioxidants as adjuvant agents, in addition to the usual treatment based on restricted diets or supplementation of tetrahydrobiopterin, may represent another step in the prevention of the neurological damage in PKU.


Assuntos
Estresse Oxidativo , Fenilcetonúrias/patologia , Animais , Antioxidantes/metabolismo , Radicais Livres/metabolismo , Humanos , Modelos Biológicos , Degeneração Neural/complicações , Degeneração Neural/patologia , Fenilcetonúrias/complicações
19.
Mutat Res ; 721(2): 206-10, 2011 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-21334454

RESUMO

Mucopolysaccharidosis type II (MPS II) is an X-linked recessive disease caused by deficiency of the lysosomal enzyme iduronate-2-sulfatase, leading to progressive accumulation of glycosaminoglycans in nearly all cell types, tissues and organs. Enzyme replacement therapy reduces the storage of these substances in the lysosomes. Oxidative stress is related to the pathophysiology of many disorders, including inborn errors of metabolism. Oxidative damage to protein and lipid has been described in MPS types I and III. The aim of this study was to analyze DNA damage, as determined by the alkaline comet assay using silver staining, in peripheral leukocytes from MPS II patients before treatment and during the first six months of enzyme replacement therapy. We also correlated DNA damage with lipid and protein oxidative damages, analyzed by plasma malondialdehyde levels and carbonyl group content, respectively. We found a significant increase in lipid and protein damage in MPS II patients before treatment when compared to controls. Also, our results showed greater DNA damage in terms of damage index (DI) in pretreatment MPS II patients (DI=18.0 ± 2.4) when compared to controls (DI=66.0 ± 2.0). Enzyme replacement therapy led to a significant decrease in levels of malondialdehyde and DNA damage when compared to pretreatment, but did not reach control values. Significant positive correlations between DNA damage and malondialdehyde levels, as well as carbonyl group content, were observed. Our findings indicate that MPS II patients are subject to DNA damage and that enzyme replacement therapy is able to protect against this process.


Assuntos
Dano ao DNA , Terapia de Reposição de Enzimas , Mucopolissacaridose II/genética , Criança , Pré-Escolar , Humanos , Lactente , Leucócitos/metabolismo , Masculino , Malondialdeído/sangue , Mucopolissacaridose II/tratamento farmacológico , Carbonilação Proteica/efeitos dos fármacos
20.
Cell Mol Neurobiol ; 30(2): 317-26, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19774456

RESUMO

High levels of phenylalanine (Phe) are the biochemical hallmark of phenylketonuria (PKU), a neurometabolic disorder clinically characterized by severe mental retardation and other brain abnormalities, including cortical atrophy and microcephaly. Considering that the pathomechanisms leading to brain damage and particularly the marked cognitive impairment in this disease are poorly understood, in the present study we investigated the in vitro effect of Phe, at similar concentrations as to those found in brain of PKU patients, on important parameters of oxidative stress in the hippocampus and cerebral cortex of developing rats. We found that Phe induced in vitro lipid peroxidation (increase of TBA-RS values) and protein oxidative damage (sulfhydryl oxidation) in both cerebral structures. Furthermore, these effects were probably mediated by reactive oxygen species, since the lipid oxidative damage was totally prevented by the free radical scavengers alpha-tocopherol and melatonin, but not by L-NAME, a potent inhibitor of nitric oxide synthase. Accordingly, Phe did not induce nitric oxide synthesis, but significantly decreased the levels of reduced glutathione (GSH), the major brain antioxidant defense, in hippocampus and cerebral cortex supernatants. Phe also reduced the thiol groups of a commercial GSH solution in a cell-free medium. We also found that the major metabolites of Phe catabolism, phenylpyruvate, phenyllactate and phenylacetate also increased TBA-RS levels in cerebral cortex, but to a lesser degree. The data indicate that Phe elicits oxidative stress in the hippocampus, a structure mainly involved with learning/memory, and also in the cerebral cortex, which is severely damaged in PKU patients. It is therefore presumed that this pathomechanism may be involved at least in part in the severe cognitive deficit and in the characteristic cortical atrophy associated with dysmyelination and leukodystrophy observed in this disorder.


Assuntos
Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenilalanina/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/crescimento & desenvolvimento , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA