Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Hum Genet ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538877

RESUMO

Mutations in BRCA1 and BRCA2 significantly elevate the risk of developing breast and ovarian cancer. Limited data exists regarding the prevalence of BRCA mutations, and optimal, cost-effective testing strategies in developing countries like India. This study aimed to evaluate the utility of a Next Generation Sequencing (NGS) panel for BRCA1/2 mutation testing among women diagnosed with, or at risk of developing hereditary breast and ovarian cancers. We also aimed to identify population specific BRCA1/2 mutation hotspots, to enable the development of more affordable testing strategies. We identified 921 patients with breast and ovarian cancer who underwent mutation testing. The target enrichment was followed by targeted NGS in 772 patients and an allele-specific PCR (ASPCR) based genotyping for BRCA1:c.68_69delAG (or 185delAG), was carried out in 149 patients. We identified 188 (20.4%) patients with BRCA1/2 variants: 118 (62.8%) with pathogenic/likely pathogenic and 70 (37.2%) with VUS. The 185delAG was identified as a recurrent mutation in the Southern Indian population, accounting for 24.6% of the pathogenic variants. In addition, a family history of breast, ovary, pancreas, or prostate (BOPP) cancer was found to be associated with an increased risk of identifying a deleterious BRCA1/2 variant [OR = 2.11 (95% CI 1.45-3.07) p ≤ 0.001]. These results suggest that Targeted NGS is a sensitive and specific strategy for BRCA testing. For Southern Indian patients, a two-tiered approach can be considered: Initial screening with ASPCR for BRCA1 185delAG followed by NGS for those testing negative. Expanding the gene panel and identifying other population-specific mutation hot spots is a promising area with potential for improvements in testing and treatment strategies.

2.
MethodsX ; 9: 101748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756349

RESUMO

Congenital Adrenal Hyperplasia (CAH) is an autosomal recessive disorder due to enzyme defects in adrenal steroidogenesis. Several genes code for these enzymes, out of which mutations in the CYP21A2 gene resulting in 21 hydroxylase deficiency, contribute to the most common form of CAH. However, pseudogene imposed challenges complicate genotyping CYP21A2 gene, and there is also a lack of comprehensive molecular investigations in other genetic forms of CAH in India. Here, we describe a cost-effective, highly specific, and sensitive Allele Specific PCR (ASPCR) assay designed and optimized in-house to screen eight common pathogenic mutations in the CYP21A2 gene. We have also established and utilized a multiplex PCR assay for target enrichment and Next-generation sequencing (NGS) of CYP11B1, CYP17A1, POR, and CYP19A1 genes. Following preliminary amplification of the functional gene CYP21A2, ASPCR based genotyping of eight common mutations - P30L, I2G, 8BPdel, I172N, E6CLUS (I235N, V236E, M238K) V281L, Q318X, and R356W was carried out. These results were further validated using Sanger and Next-generation sequencing. Once optimized to be specific and sensitive, the advantage of ASPCR in CYP21A2 genotyping extends to provide genetic screening for both adult and paediatric subjects and carrier testing at a low cost and less time. Furthermore, multiplex PCR coupled NGS has shown to be cost-effective and robust for parallel multigene sequencing in CAH.

3.
J Clin Endocrinol Metab ; 107(5): 1328-1336, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35018440

RESUMO

CONTEXT: Wolfram syndrome (WFS) is a rare autosomal recessive disorder characterized by juvenile-onset diabetes, diabetes insipidus, optic atrophy, deafness, and progressive neurodegeneration. However, due to the progressive nature of the disease and a lack of complete clinical manifestations, a confirmed diagnosis of WFS at the time of onset of diabetes is a challenge. OBJECTIVE: With WFS1 rare heterozygous variants reported in diabetes, there is a need for comprehensive genetic screening strategies for the early diagnosis of WFS and delineating the phenotypic spectrum associated with the WFS1 gene variants in young-onset diabetes. METHODS: This case series of 11 patients who were positive for WFS1 variants were identified with next-generation sequencing (NGS)-based screening of 17 genemonogenic diabetes panel. These results were further confirmed with Sanger sequencing. RESULTS: 9 out of 11 patients were homozygous for pathogenic/likely pathogenic variants in the WFS1 gene. Interestingly, 3 of these probands were positive for the novel WFS1 (NM_006005.3): c.1107_1108insA (p.Ala370Serfs*173) variant, and haplotype analysis suggested a founder effect in 3 families from Southern India. Additionally, we identified 2 patients with young-onset diabetes who were heterozygous for a likely pathogenic variant or a variant of uncertain significance in the WFS1 gene. CONCLUSION: These results project the need for NGS-based parallel multigene testing as a tool for early diagnosis of WFS and identify heterozygous WFS1 variants implicated in young-onset diabetes.


Assuntos
Proteínas de Membrana , Síndrome de Wolfram , Feminino , Humanos , Índia/epidemiologia , Masculino , Proteínas de Membrana/genética , Mutação , Fenótipo , Síndrome de Wolfram/diagnóstico , Síndrome de Wolfram/genética , Síndrome de Wolfram/patologia
4.
Eur J Med Genet ; 64(12): 104369, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34718183

RESUMO

Genetic screening of Congenital Adrenal Hyperplasia (CAH) is known to be challenging due to the complexities in CYP21A2 genotyping and has not been the first-tier diagnostic tool in routine clinical practice. Also, with the advent of massive parallel sequencing technology, there is a need for investigating its utility in screening extended panel of genes implicated in CAH. In this study, we have established and utilized an Allele-Specific Polymerase Chain Reaction (ASPCR) based approach for screening eight common mutations in CYP21A2 gene followed by targeted Next Generation Sequencing (NGS) of CYP21A2, CYP11B1, CYP17A1, POR, and CYP19A1 genes in 72 clinically diagnosed CAH subjects from India. Through these investigations, 88.7% of the subjects with 21 hydroxylase deficiency were positive for eight CYP21A2 mutations with ASPCR. The targeted NGS assay was sensitive to pick up all the mutations identified by ASPCR. Utilizing NGS in subjects negative for ASPCR, five study subjects were homozygous positive for other CYP21A2 variants: one with a novel c.1274G>T, three with c.1451G>C and one with c.143A>G variant. One subject was compound heterozygous for c.955C>T and c.1042G>A variants identified using ASPCR and NGS. One subject suspected for a Simple Virilizing (SV) 21 hydroxylase deficiency was positive for a CYP19A1:c.1142A>T variant. CYP11B1 variants (c.1201-1G>A, c.1200+1del, c.412C>T, c.1024C>T, c.1012dup, c.623G>A) were identified in all six subjects suspected for 11 beta-hydroxylase deficiency. The overall mutation positivity was 97.2%. Our results suggest that ASPCR followed by targeted NGS is a cost-effective and comprehensive strategy for screening common CYP21A2 mutations and the CAH panel of genes in a clinical setting.


Assuntos
Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , Alelos , Feminino , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Índia , Masculino , Mutação/genética , Fenótipo , Reação em Cadeia da Polimerase/métodos , Esteroide 21-Hidroxilase/genética
5.
PLoS One ; 12(1): e0168656, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28095440

RESUMO

Pregnant women with diabetes may have underlying beta cell dysfunction due to mutations/rare variants in genes associated with Maturity Onset Diabetes of the Young (MODY). MODY gene screening would reveal those women genetically predisposed and previously unrecognized with a monogenic form of diabetes for further clinical management, family screening and genetic counselling. However, there are minimal data available on MODY gene variants in pregnant women with diabetes from India. In this study, utilizing the Next generation sequencing (NGS) based protocol fifty subjects were screened for variants in a panel of thirteen MODY genes. Of these subjects 18% (9/50) were positive for definite or likely pathogenic or uncertain MODY variants. The majority of these variants was identified in subjects with autosomal dominant family history, of whom five were in women with pre-GDM and four with overt-GDM. The identified variants included one patient with HNF1A Ser3Cys, two PDX1 Glu224Lys, His94Gln, two NEUROD1 Glu59Gln, Phe318Ser, one INS Gly44Arg, one GCK, one ABCC8 Arg620Cys and one BLK Val418Met variants. In addition, three of the seven offspring screened were positive for the identified variant. These identified variants were further confirmed by Sanger sequencing. In conclusion, these findings in pregnant women with diabetes, imply that a proportion of GDM patients with autosomal dominant family history may have MODY. Further NGS based comprehensive studies with larger samples are required to confirm these finding.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação/genética , Adulto , Estudos Transversais , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Índia/epidemiologia , Masculino , Linhagem , Fenótipo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA