Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(10): 4316-4327, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30763078

RESUMO

We report a solution NMR-based analysis of (16-mercaptohexadecyl)trimethylammonium bromide (MTAB) self-assembled monolayers on colloidal gold nanospheres (AuNSs) with diameters from 1.2 to 25 nm and gold nanorods (AuNRs) with aspect ratios from 1.4 to 3.9. The chemical shift analysis of the proton signals from the solvent-exposed headgroups of bound ligands suggests that the headgroups are saturated on the ligand shell as the sizes of the nanoparticles increase beyond ∼10 nm. Quantitative NMR shows that the ligand density of MTAB-AuNSs is size-dependent. Ligand density ranges from ∼3 molecules per nm2 for 25 nm particles to up to 5-6 molecules per nm2 in ∼10 nm and smaller particles for in situ measurements of bound ligands; after I2/I- treatment to etch away the gold cores, ligand density ranges from ∼2 molecules per nm2 for 25 nm particles to up to 4-5 molecules per nm2 in ∼10 nm and smaller particles. T2 relaxation analysis shows greater hydrocarbon chain ordering and less headgroup motion as the diameter of the particles increases from 1.2 nm to ∼13 nm. Molecular dynamics simulations of 4, 6, and 8 nm (11-mercaptoundecyl)trimethylammonium bromide-capped AuNSs confirm greater hydrophobic chain packing order and saturation of charged headgroups within the same spherical ligand shell at larger nanoparticle sizes and higher ligand densities. Combining the NMR studies and MD simulations, we suggest that the headgroup packing limits the ligand density, rather than the sulfur packing on the nanoparticle surface, for ∼10 nm and larger particles. For MTAB-AuNRs, no chemical shift data nor ligand density data suggest that two populations of ligands that might correspond to side-ligands and end-ligands exist; yet T2 relaxation dynamics data suggest that headgroup mobility depends on aspect ratio and absolute nanoparticle dimensions.


Assuntos
Nanopartículas Metálicas/química , Compostos de Amônio Quaternário/química , Compostos de Sulfidrila/química , Ouro/química , Ligantes , Espectroscopia de Ressonância Magnética , Membranas Artificiais , Simulação de Dinâmica Molecular , Estrutura Molecular , Compostos de Amônio Quaternário/síntese química , Compostos de Sulfidrila/síntese química , Propriedades de Superfície
2.
Langmuir ; 34(36): 10793-10805, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30102857

RESUMO

Molecular understanding of the impact of nanomaterials on cell membranes is critical for the prediction of effects that span environmental exposures to nanoenabled therapies. Experimental and computational studies employing phospholipid bilayers as model systems for membranes have yielded important insights but lack the biomolecular complexity of actual membranes. Here, we increase model membrane complexity by incorporating the peripheral membrane protein cytochrome c and studying the interactions of the resulting membrane systems with two types of anionic nanoparticles. Experimental and computational studies reveal that the extent of cytochrome c binding to supported lipid bilayers depends on anionic phospholipid number density and headgroup chemistry. Gold nanoparticles functionalized with short, anionic ligands or wrapped with an anionic polymer do not interact with silica-supported bilayers composed solely of phospholipids. Strikingly, when cytochrome c was bound to these bilayers, nanoparticles functionalized with short anionic ligands attached to model biomembranes in amounts proportional to the number of bound cytochrome c molecules. In contrast, anionic polymer-wrapped gold nanoparticles appeared to remove cytochrome c from supported lipid bilayers in a manner inversely proportional to the strength of cytochrome c binding to the bilayer; this reflects the removal of a weakly bound pool of cytochrome c, as suggested by molecular dynamics simulations. These results highlight the importance of the surface chemistry of both the nanoparticle and the membrane in predicting nano-bio interactions.


Assuntos
Citocromos c/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Nanopartículas Metálicas/química , Animais , Sítios de Ligação , Cardiolipinas/química , Bovinos , Citocromos c/química , Ouro/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfatidilinositóis , Ligação Proteica , Eletricidade Estática
3.
Anal Chem ; 89(3): 1823-1830, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28078889

RESUMO

Polyelectrolyte (PE) wrapping of colloidal nanoparticles (NPs) is a standard method to control NP surface chemistry and charge. Because excess polyelectrolytes are usually employed in the surface modification process, it is critical to evaluate different purification strategies to obtain a clean final product and thus avoid ambiguities in the source of effects on biological systems. In this work, 4 nm diameter gold nanoparticles (AuNPs) were wrapped with 15 kDa poly(allylamine hydrochloride) (PAH), and three purification strategies were applied: (a) diafiltration or either (b) one round or (c) two rounds of centrifugation. The bacterial toxicity of each of these three PAH-AuNP samples was evaluated for the bacterium Shewanella oneidensis MR-1 and is quantitatively correlated with the amount of unbound PAH molecules in the AuNP suspensions, as judged by X-ray photoelectron spectroscopy, nuclear magnetic resonance experiments and quantification using fluorescent assay. Dialysis experiments show that, for a 15 kDa polyelectrolyte, a 50 kDa dialysis membrane is not sufficient to remove all PAH polymers. Together, these data showcase the importance of choosing a proper postsynthesis purification method for polyelectrolyte-wrapped NPs and reveal that apparent toxicity results may be due to unintended free wrapping agents such as polyelectrolytes.


Assuntos
Coloides/química , Ouro/química , Nanopartículas Metálicas/toxicidade , Poliaminas/química , Polieletrólitos/análise , Shewanella/efeitos dos fármacos , Centrifugação , Filtração/métodos , Fluorescência , Espectroscopia de Ressonância Magnética , Membranas Artificiais , Nanopartículas Metálicas/química , Espectroscopia Fotoeletrônica , Poliaminas/análise , Polieletrólitos/isolamento & purificação , Testes de Toxicidade/métodos
4.
Langmuir ; 32(39): 9905-9921, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27568788

RESUMO

Gold nanorods have garnered a great deal of scientific interest because of their unique optical properties, and they have the potential to greatly impact many areas of science and technology. Understanding the structure and chemical makeup of their surfaces as well as how to tailor them is of paramount importance in the development of their successful applications. This Feature Article reviews the current understanding of the surface chemistry of as-synthesized gold nanorods, methods of tailoring the surface chemistry of gold nanorods with various inorganic and organic coatings/ligands, and the techniques employed to characterize ligands on the surface of gold nanorods as well as the associated measurement challenges. Specifically, we address the challenges of determining how thick the ligand shell is, how many ligands per nanorod are present on the surface, and where the ligands are located in regiospecific and mixed-ligand systems. We conclude with an outlook on the development of the surface chemistry of gold nanorods leading to the development of a synthetic nanoparticle surface chemistry toolbox analogous to that of synthetic organic chemistry and natural product synthesis.

5.
Environ Sci Nano ; 5(2): 279-288, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29805793

RESUMO

We aim to establish the effect of environmental diversity in evaluating nanotoxicity to bacteria. We assessed the toxicity of 4 nm polyallylamine hydrochloride-wrapped gold nanoparticles to a panel of bacteria from diverse environmental niches. The bacteria experienced a range of toxicities as evidenced by the different minimum bactericidal concentrations determined; the sensitivities of the bacteria was A. vinelandii = P. aeruginosa > S. oneidensis MR-4 > A. baylyi > S. oneidensis MR-1. Interactions between gold nanoparticles and molecular components of the cell wall were investigated by TEM, flow cytometry, and computational modeling. Binding results showed a general trend that bacteria with smooth LPS bind more PAH AuNPs than bacteria with rough LPS. Computational models reveal that PAH migrates to phosphate groups in the core of the LPS structure. Overall, our results demonstrate that simple interactions between nanoparticles and the bacterial cell wall cannot fully account for observed trends in toxicity, which points to the importance of establishing more comprehensive approaches for modeling environmental nanotoxicity.

6.
ACS Nano ; 11(6): 5489-5499, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28482159

RESUMO

Interactions of functionalized nanomaterials with biological membranes are expected to be governed by not only nanoparticle physiochemical properties but also coatings or "coronas" of biomacromolecules acquired after immersion in biological fluids. Here we prepared a library of 4-5 nm gold nanoparticles (AuNPs) coated with either ω-functionalized thiols or polyelectrolyte wrappings to examine the influence of surface functional groups on the assemblage of proteins complexing the nanoparticles and its subsequent impact on attachment to model biological membranes. We find that the initial nanoparticle surface coating has a cascading effect on interactions with model cell membranes by determining the assemblage of complexing proteins, which in turn influences subsequent interaction with model biological membranes. Each type of functionalized AuNP investigated formed complexes with a unique ensemble of serum proteins that depended on the initial surface coating of the nanoparticles. Formation of protein-nanoparticle complexes altered the electrokinetic, hydrodynamic, and plasmonic properties of the AuNPs. Complexation of the nanoparticles with proteins reduced the attachment of cationic AuNPs and promoted attachment of anionic AuNPs to supported lipid bilayers; this trend is observed with both lipid bilayers comprising 100% zwitterionic phospholipids and those incorporating anionic phosphatidylinositol. Complexation with serum proteins led to attachment of otherwise noninteracting oligo(ethylene glycol)-functionalized AuNPs to bilayers containing phosphatidylinositol. These results demonstrate the importance of considering both facets of the nano-bio interface: functional groups displayed on the nanoparticle surface and proteins complexing the nanoparticles influence interaction with biological membranes as does the molecular makeup of the membranes themselves.


Assuntos
Ouro/química , Bicamadas Lipídicas/química , Nanopartículas Metálicas/química , Polieletrólitos/química , Compostos de Sulfidrila/química , Animais , Proteínas Sanguíneas/química , Bovinos , Fosfolipídeos/química , Coroa de Proteína/química , Soroalbumina Bovina/química , Propriedades de Superfície , Lipossomas Unilamelares/química
7.
J Phys Chem Lett ; 7(4): 632-41, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26817922

RESUMO

Anisotropic nanoparticles are powerful building blocks for materials engineering. Unusual properties emerge with added anisotropy-often to an extraordinary degree-enabling countless new applications. For bottom-up assembly, anisotropy is crucial for programmability; isotropic particles lack directional interactions and can self-assemble only by basic packing rules. Anisotropic particles have long fascinated scientists, and their properties and assembly behavior have been the subjects of many theoretical studies over the years. However, only recently has experiment caught up with theory. We have begun to witness tremendous diversity in the synthesis of nanoparticles with controlled anisotropy. In this Perspective, we highlight the synthetic achievements that have galvanized the field, presenting a comprehensive discussion of the mechanisms and products of both seed-mediated and alternative growth methods. We also address recent breakthroughs and challenges in regiospecific functionalization, which is the next frontier in exploiting nanoparticle anisotropy.

8.
ACS Cent Sci ; 1(3): 117-23, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162961

RESUMO

The interaction of nanomaterials with biomolecules, cells, and organisms is an enormously vital area of current research, with applications in nanoenabled diagnostics, imaging agents, therapeutics, and contaminant removal technologies. Yet the potential for adverse biological and environmental impacts of nanomaterial exposure is considerable and needs to be addressed to ensure sustainable development of nanomaterials. In this Outlook four research needs for the next decade are outlined: (i) measurement of the chemical nature of nanomaterials in dynamic, complex aqueous environments; (ii) real-time measurements of nanomaterial-biological interactions with chemical specificity; (iii) delineation of molecular modes of action for nanomaterial effects on living systems as functions of nanomaterial properties; and (iv) an integrated systems approach that includes computation and simulation across orders of magnitude in time and space.

9.
Chem Sci ; 6(9): 5186-5196, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29449924

RESUMO

Although nanomaterials facilitate significant technological advancement in our society, their potential impacts on the environment are yet to be fully understood. In this study, two environmentally relevant bacteria, Shewanella oneidensis and Bacillus subtilis, have been used as model organisms to elucidate the molecular interactions between these bacterial classes and Au nanoparticles (AuNPs) with well-controlled and well-characterized surface chemistries: anionic 3-mercaptopropionic acid (MPA), cationic 3-mercaptopropylamine (MPNH2), and the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH). The data demonstrate that cationic, especially polyelectrolyte-wrapped AuNPs, were more toxic to both the Gram-negative and Gram-positive bacteria. The levels of toxicity observed were closely related to the percentage of cells with AuNPs associated with the cell surface as measured in situ using flow cytometry. The NP concentration-dependent binding profiles were drastically different for the two bacteria strains, suggesting the critical role of bacterial cell surface chemistry in determining nanoparticle association, and thereby, biological impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA