Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674665

RESUMO

In the beginning of COVID-19, the proportion of confirmed cases in the pediatric population was relatively small and there was an opinion that children often had a mild or asymptomatic course of infection. Our understanding of the immune response, diagnosis and treatment of COVID-19 is highly oriented towards the adult population. At the same time, despite the fact that COVID-19 in children usually occurs in a mild form, there is an incomplete understanding of the course as an acute infection and its subsequent manifestations such as Long-COVID-19 or Post-COVID-19, PASC in the pediatric population, correlations with comorbidities and immunological changes. In mild COVID-19 in childhood, some authors explain the absence of population decreasing T and B lymphocytes. Regardless of the patient's condition, they can have the second phase, related to the exacerbation of inflammation in the heart tissue even if the viral infection was completely eliminated-post infectious myocarditis. Mechanism of myocardial dysfunction development in MIS-C are not fully understood. It is known that various immunocompetent cells, including both resident inflammatory cells of peripheral tissues (for example macrophages, dendritic cells, resident memory T-lymphocytes and so on) and also circulating in the peripheral blood immune cells play an important role in the immunopathogenesis of myocarditis. It is expected that hyperproduction of interferons and the enhanced cytokine response of T cells 1 and 2 types contribute to dysfunction of the myocardium. However, the role of Th1 in the pathogenesis of myocarditis remains highly controversial. At the same time, the clinical manifestations and mechanisms of damage, including the heart, both against the background and after COVID-19, in children differ from adults. Further studies are needed to evaluate whether transient or persistent cardiac complications are associated with long-term adverse cardiac events.


Assuntos
COVID-19 , Miocardite , Adulto , Humanos , Criança , COVID-19/complicações , COVID-19/diagnóstico , Miocardite/diagnóstico , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Teste para COVID-19
2.
Cardiology ; 147(1): 35-46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34628415

RESUMO

BACKGROUND: Brugada syndrome (BrS) is a rare inherited cardiac arrhythmia with increased risk of sudden cardiac death. Mutations in gene SCN5A, which encodes the α-subunit of cardiac voltage-gated sodium channel NaV1.5, have been identified in over 20% of patients with BrS. However, only a small fraction of NaV1.5 variants, which are associated with BrS, are characterized in electrophysiological experiments. RESULTS: Here we explored variants V281A and L1582P, which were found in our patients with BrS, and variants F543L and K1419E, which are reportedly associated with BrS. Heterologous expression of the variants in CHO-K1 cells and the Western blot analysis demonstrated that each variant appeared at the cell surface. We further measured sodium current in the whole-cell voltage clamp configuration. Variant F543L produced robust sodium current with a hyperpolarizing shift in the voltage dependence of steady-state fast inactivation. Other variants did not produce detectable sodium currents, indicating a complete loss of function. In a recent cryoEM structure of the hNaV1.5 channel, residues V281, K1419, and L1582 are in close contacts with residues whose mutations are reportedly associated with BrS, indicating functional importance of respective contacts. CONCLUSIONS: Our results support the notion that loss of function of NaV1.5 or decrease of the channel activity is involved in the pathogenesis of BrS.


Assuntos
Síndrome de Brugada , Canal de Sódio Disparado por Voltagem NAV1.5 , Síndrome de Brugada/genética , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética
3.
J Card Surg ; 36(6): 2063-2069, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33738821

RESUMO

BACKGROUND: A combination of coarctation of aorta with various severity of distal arch hypoplasia frequently occurs in newborns. Traditional techniques in the neonatal period such as extended end-to-end anastomosis or inner curve patch are controversial. Arch geometry has a marked role in long-term outcomes. We introduce a modified Amato technique of distal aortic arch enlargement with native tissue-to-tissue reconstruction. METHODS: Neonatal patients with coarctation of aorta and distal aortic arch hypoplasia who underwent surgical reconstruction using this technique between January 2016 and December 2019 in our center were included. Patients with concomitant complex heart defects were excluded. Data were obtained from echo protocols, CT scans before and after repair. The dimensions of the arch were assessed using Z-score, arch geometry was evaluated with height/width ratio. RESULTS: Thirty-two patients (22 males, 10 females) were included. Median age and weight were 7 days (5; 18) and 3.5 kg (3.1; 4.0), respectively. The Z-score of distal part of the arch before and after procedure was significantly different (<0.01). No mortality, recoarctation, or bronchial compression was found during 18 (6-38) months of follow-up. CONCLUSION: Modified technique for coarctation of aorta with hypoplastic distal aortic arch provides favorable geometry of the aorta with a low risk of morbidity. The proper selection and accurate technique could minimize potential risks. This method is relatively safe and might improve long-term outcomes associated with the geometry of aorta.


Assuntos
Coartação Aórtica , Cardiopatias Congênitas , Anastomose Cirúrgica , Aorta/cirurgia , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Coartação Aórtica/diagnóstico por imagem , Coartação Aórtica/cirurgia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos
4.
Cardiology ; 145(11): 746-756, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33049752

RESUMO

INTRODUCTION: Left ventricular non-compaction (LVNC) represents a genetically heterogeneous cardiomyopathy which occurs in both children and adults. Its genetic spectrum overlaps with other types of cardiomyopathy. However, LVNC phenotypes in different age groups can have distinct genetic aetiologies. The aim of the study was to decipher the genetic spectrum of LVNC presented in childhood. Patient Group and Methods: Twenty patients under the age of 18 years diagnosed with LVNC were enrolled in the study. Target sequencing and whole-exome sequencing were performed using a panel of 108 cardiomyopathy-associated genes. Pathogenic, likely pathogenic, and variants of unknown significance found in genes highly expressed in cardiomyocytes were considered as variants of interest for further analysis. RESULTS: The median age at presentation was 8.0 (0.1-17) years, with 6 patients presenting before 1 year of age. Twelve (60%) patients demonstrated reduced ejection fraction. Right ventricular (RV) dilation was registered in 6 (30%), often in combination with reduced RV contractility (25%). Almost half (45%) of the patients demonstrated biventricular involvement already at disease presentation. For pathogenic and likely pathogenic variants, the positive genotyping rate was 45%, and these variants were found mainly in non-contractile structural sarcomeric genes (ACTN2, MYPN, and TTN) or in metabolic and signal transduction genes (BRAF and TAZ). Likely pathogenic TAZ variants were detected in all 5 patients suspected of having Barth syndrome. No pathogenic or likely pathogenic variants were found in genes encoding for sarcomeric contractile proteins, but variants of unknown significance were detected in 3 out of 20 patients (MYH6, MYH7, and MYLK2). In 4 patients, variants of unknown significance in ion-channel genes were detected. CONCLUSION: We detected a low burden of contractile sarcomeric variants in LVNC patients presenting below the age of 18 years, with the major number of variants residing in non-contractile structural sarcomeric genes. The identification of the variants in ion-channel and related genes not previously associated with LVNC in paediatric patients requires further examination of their functional role.


Assuntos
Cardiomiopatias , Cardiopatias Congênitas , Adolescente , Cardiomiopatias/genética , Criança , Ventrículos do Coração , Humanos , Mutação , Fenótipo
5.
Cardiol Young ; 27(3): 435-442, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27211482

RESUMO

Purpose This study aimed to assess the results of endomyocardial biopsy from the right ventricle to establish the possible cause for drug-refractory arrhythmias in children. Materials and methods We enrolled 19 consecutive young patients with drug-refractory arrhythmia, from 2010 to 2013, who underwent endomyocardial biopsy. Inclusion criteria were as follows: age <18 years with a structurally normal heart or mild changes in a structure of the heart initially diagnosed as arrhythmia-induced cardiomyopathy. Overall, 86 biopsies were performed in 19 patients. Histopathological analysis, immunohistochemistry, and polymerase chain reaction were used for the interpretation of the endomyocardial biopsy. RESULTS: The mean age of the patient population was 14.1±2.9 year (range from 7 to 17 years). All these patients had a history of drug-refractory arrhythmia for >5 months (mean 30 months). Patients underwent a complete history investigation, physical examination, laboratory studies, echocardiography, electrocardiography, treadmill test, and Holter monitoring before endomyocardial biopsy; two patients with arrhythmogenic right ventricular dysplasia had implantable cardioverter defibrillator implantation and further appropriate successful device shocks. Myocarditis was diagnosed based on histopathological and immunohistological analyses in nine (47.4%) patients. Polymerase chain reaction was positive for viral genome in four of them; five patients had active myocarditis. Radiofrequency ablation was performed in 17 patients; five out of six (83%) endomyocardial biopsy-proved myocarditis patients had successful radiofrequency ablation. No significant complication was reported during ablation and endomyocardial biopsy. CONCLUSIONS: Approximately half of the children with drug-refractory arrhythmia had unsuspected myocarditis according to the results of the endomyocardial biopsy.


Assuntos
Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/diagnóstico , Biópsia/métodos , Resistência a Medicamentos , Ventrículos do Coração/patologia , Miocardite/complicações , Miocárdio/patologia , Adolescente , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Criança , Feminino , Seguimentos , Humanos , Imagem Cinética por Ressonância Magnética , Masculino , Miocardite/diagnóstico , Estudos Prospectivos , Reprodutibilidade dos Testes
6.
Life (Basel) ; 13(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36983936

RESUMO

The question of COVID-19 and long-COVID-19 course in children remains unsolved. This infection in children, which is associated with COVID-19, can vary from asymptomatic to systemic damage of various systems. Multisystem inflammatory syndrome in children, associated with SARS-CoV-2 (MIS-C), is a serious condition in children and adolescents after experiencing COVID-19. Published data on MIS-C have indicated that the inflammation can be registered in the gastrointestinal tract (60-100%), as well as in cardiovascular (80%), nervous (29-58%), and respiratory (21-65%) systems. However, with the changing characteristics of SARS-CoV-2, the manifestations of COVID-19 and long-COVID-19 in children have also been changing. Currently, there is no clear understanding of the development of severe COVID-19 and MIS-C in children, especially after being exposed to patients with COVID-19. We presented two new clinical courses of multisystem inflammatory syndrome in children with severe multisystem damage after close contact to relatives with COVID-19 or long-COVID-19. Thus, high-risk children, who are positive for SARS-CoV-2 infection after contact with COVID-19 patients, should be clinically managed during the first few months. The identification of the disease complexity requires the involvement of neurologists, cardiologists, and other specialists.

7.
Front Cardiovasc Med ; 10: 1216976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781308

RESUMO

Introduction: The present study aimed to describe the phenotypic features and genetic spectrum of arrhythmogenic cardiomyopathy (ACM) presented in childhood and test the validity of different diagnostic approaches using Task Force Criteria 2010 (TFC) and recently proposed Padua criteria. Patients and methods: Thirteen patients (mean age at diagnosis 13.6 ± 3.7 years) were enrolled using "definite" or "borderline" diagnostic criteria of ACM according to the TFC 2010 and the Padua criteria in patients <18 years old. Clinical data, including family history, 12-lead electrocardiogram (ECG), signal-averaged ECG, 24-h Holter monitoring, imaging techniques, genetic testing, and other relevant information, were collected. Results: All patients were classified into three variants: ACM of right ventricle (ACM-RV; n = 6, 46.1%), biventricular ACM (ACM-BV; n = 3, 23.1%), and ACM of left ventricle (ACM-LV; n = 4, 30.8%). The most common symptoms at presentations were syncope (n = 6; 46.1%) and palpitations (n = 5; 38.5%). All patients had more than 500 premature ventricular contractions per day. Ventricular tachycardia was reported in 10 patients (76.9%), and right ventricular dilatation was registered in 8 patients (61.5%). An implantable cardiac defibrillator was implanted in 61.5% of cases, and three patients with biventricular involvement underwent heart transplantation. Desmosomal mutations were identified in 8 children (53.8%), including four patients with PKP2 variants, two with DSP variants, one with DSG2 variant, and one with JUP. Four patients carried compound heterozygous variants in desmosomal genes associated with left ventricular involvement. Conclusion: Arrhythmias and structural heart disease, such as chamber dilatation, should raise suspicion of different ACM phenotypes. Diagnosis of ACM might be difficult in pediatric patients, especially for ACM-LV and ACM-BV forms. Our study confirmed that using "Padua criteria" in combination with genetic testing improves the diagnostic accuracy of ACM in children.

8.
Front Cardiovasc Med ; 9: 932956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935653

RESUMO

Pathogenic variants in the LMNA gene are known to cause laminopathies, a broad range of disorders with different clinical phenotypes. LMNA genetic variants lead to tissue-specific pathologies affecting various tissues and organs. Common manifestations of laminopathies include cardiovascular system abnormalities, in particular, cardiomyopathies and conduction disorders. In the present study, we used induced pluripotent stem cells from a patient carrying LMNA p.R249Q genetic variant to create an in vitro cardiac model of laminopathy. Induced pluripotent stem cell-derived cardiomyocytes with LMNA p.R249Q genetic variant showed a decreased sodium current density and an impaired sodium current kinetics alongside with changes in transcription levels of cardiac-specific genes. Thus, we obtained compelling in vitro evidence of an association between LMNA p.R249Q genetic variant and cardiac-related abnormalities.

9.
Diagnostics (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36611412

RESUMO

COVID-19 (Coronavirus disease 2019) in children is usually mild. However, multiple organ disorders associated with SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus 2) have been detected with poor respiratory symptoms. Cardiac changes are noted in 17% to 75% of cases, which are associated with diagnostic difficulties in high-risk groups for the development of complications that are associated with myocardial damage by the SARS-CoV-2 virus. The objective of this review is to identify the most significant symptoms of cardiac involvement affected by COVID-19, which require in-depth examination. The authors analyzed publications from December 2019 to the October 2022, which were published in accessible local and international databases. According to the analysis data, the main sign of myocardial involvement was increasing as cardiomarkers in the patient's blood, in particular troponin I or troponin T. Many authors noted that the increased level of CRP (C-reactive protein) and NT-proBNP, which are accompanied by changes in the ECG (electrocardiogram) and EchoCG (echocardiography), as a rule, were nonspecific. However, the identified cardiac functional dysfunctions affected by SARS-CoV-2, required an cardiac MRI. The lack of timely diagnosis of myocardial involvements, especially in children at high risk for the development of complications associated with SARS-CoV-2 myocardial injury, can lead to death. The direct damage of the structural elements of myocardial blood vessels in patients with severe hypoxic changes resulted from respiratory failure caused by SARS-CoV-2 lung damage, with the development of severe acute diffuse alveolar damage and cell-mediated immune response and myocardial involvement affected by SARS-CoV-2 damage. In this article, the authors introduce a clinical case of a child who dead from inflammatory myocardities with COVID-19 in a background of congenital heart disease and T-cell immunodeficiency.

10.
Front Pediatr ; 10: 854367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433531

RESUMO

It is known that the SARS-CoV-2 virus may cause neurologic damage. Rapid-onset obesity, hypoventilation, hypothalamus dysfunction, and autonomic dysregulation (ROHHAD) syndrome is a disease of unknown etiology with a progressive course and unclear outcomes. The etiology of ROHHAD syndrome includes genetic, epigenetic, paraneoplastic, and immune-mediated theories, but to our knowledge, viral-associated cases of the disease have not been described yet. Here we present the case of a 4-year-old girl who developed a ROHHAD syndrome-like phenotype after a COVID-19 infection and the results of 5 months of therapy. She had COVID-19 pneumonia, followed by electrolyte disturbances (hypernatremia and hyperchloremia), hypocorticism and hypothyroidism, central hypoventilation-requiring prolonged assisted lung ventilation-bulimia, and progressive obesity with hypertriglyceridemia, dyslipidemia, hyperuricemia, and hyperinsulinemia. The repeated MRI of the brain and hypothalamic-pituitary region with contrast enhancement showed mild post-hypoxic changes. Prader-Willi/Angelman syndrome as well as PHOX2B-associated variants was ruled out. Treatment with non-steroidal anti-inflammatory drugs and monthly courses of intravenous immunoglobulin led to a dramatic improvement. Herein the first description of ROHHAD-like syndrome is timely associated with a previous COVID-19 infection with possible primarily viral or immune-mediated hypothalamic involvement.

11.
Front Pediatr ; 10: 1070303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36874254

RESUMO

Introduction: Congenital central hypoventilation syndrome (CCHS) is a rare disease characterized by central alveolar hypoventilation and impaired autonomic regulation, caused by pathogenic variants of PHOX2B gene. More than 90% of patients have a polyalanine repeat mutation (PARM) in the heterozygous state, characterized by the expansion of GCN repeats and an increase in the number of alanine repeats, so that genotypes 20/24-20/33 are formed (the normal genotype is 20/20). The remaining 10% of patients harbor non-PARMs. Case description: We present a clinical case of a girl with a novel PHOX2B heterozygous genetic variant in the exon 3: NM_003924.4: c.735_791dup, p.Ala248_Ala266dup. The duplication includes 16 GCN (alanine) repeats and 3 adjacent amino acids. Both clinically healthy parents demonstrated a normal PHOX2B sequence. In addition, the girl has a variant of unknown significance in RYR1 gene and a variant of unknown significance in NKX2-5 gene. The child's phenotype is quite special. She needs ventilation during sleep, and has Hirschsprung's disease type I, arteriovenous malformation S4 of the left lung, ventricular and atrium septal defects, coronary right ventricular fistula, hemodynamically nonsignificant, episodes of sick sinus and atrioventricular dissociation with bradycardia, divergent alternating strabismus, and oculus uterque (both eyes) (OU) retinal angiopathy. Two episodes of hypoglycemic seizures were also registered. Severe pulmonary hypertension resolved after appropriate ventilation adjustment. Diagnostic odyssey was quite dramatic. Conclusion: Detection of a novel PHOX2B variant expands the understanding of molecular mechanisms of CCHS and genotype-phenotype correlations.

12.
J Matern Fetal Neonatal Med ; 35(10): 2020-2024, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32552076

RESUMO

The application of the 3D printing approach in medicine is currently becoming increasingly popular. The management of fetuses and newborns with congenital heart defects is often difficult, primarily due to the complexity of the anatomy. Here we report a newborn with a complex congenital malformation (absent pulmonary valve syndrome associated with tetralogy of Fallot), which could be clinically interpreted in different ways. 3D printing allowed to elucidate the exact anatomy more precisely and direct the cardiosurgeon to a definitive treatment.


Assuntos
Cardiopatias Congênitas , Tetralogia de Fallot , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Humanos , Recém-Nascido , Impressão Tridimensional , Tetralogia de Fallot/complicações
13.
Genes (Basel) ; 12(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450993

RESUMO

RBM20 (RNA-binding motif protein 20) is a splicing factor targeting multiple cardiac genes, and its mutations cause cardiomyopathies. Originally, RBM20 mutations were discovered to cause the development of dilated cardiomyopathy by erroneous splicing of the gene TTN (titin). Titin is a giant protein found in a structure of the sarcomere that functions as a molecular spring and provides a passive stiffness to the cardiomyocyte. Later, RBM20 mutations were also described in association with arrhythmogenic right ventricular cardiomyopathy and left ventricular noncompaction cardiomyopathy. Here, we present a clinical case of a rare arrhythmogenic phenotype and no structural cardiac abnormalities associated with a RBM20 genetic variant of uncertain significance.


Assuntos
Arritmias Cardíacas/genética , Proteínas de Ligação a RNA/genética , Adulto , Cardiomiopatia Dilatada/genética , Conectina/genética , Humanos , Masculino , Splicing de RNA
14.
NPJ Genom Med ; 6(1): 21, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664273

RESUMO

Here we report an infant with clinical findings suggestive of Jervell and Lange-Nielsen syndrome (JLNS), including a prolonged QT interval (LQTS) and chronic bilateral sensorineural deafness. NGS analysis revealed one known heterozygous pathogenic missense variant, KCNQ1 p.R259L, previously associated with LQTS but insufficient to explain the cardioauditory disorder. In a screening of proximal intronic regions, we found a heterozygous variant, KCNQ1 c.1686-9 T > C, absent from controls and previously undescribed. Several splicing prediction tools returned low scores for this intronic variant. Driven by the proband's phenotype rather than the neutral predictions, we have characterized this rare intronic variant. Family analysis has shown that the proband inherited the missense and the intronic variants from his mother and father, respectively. A minigene splicing assay revealed that the intronic variant induced an additional transcript, arising from skipping of exon 14, which was translated into a truncated protein in transfected cells. The splice-out of exon 14 creates a frameshift in exon 15 and a stop codon in exon 16, which is the last exon of KCNQ1. This mis-spliced transcript is expected to escape nonsense-mediated decay and predicted to encode a truncated loss-of-function protein, KCNQ1 p.L563Kfs*73. The analysis of endogenous KCNQ1 expression in the blood of the proband's parents detected the aberrant transcript only in the patient's father. Taken together, these analyses confirmed the proband's diagnosis of JLNS1 and indicated that c.1686-9 T > C is a cryptic splice-altering variant, expanding the known genetic spectrum of biallelic KCNQ1 variant combinations leading to JLNS1.

15.
Front Cardiovasc Med ; 8: 668231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026875

RESUMO

Emery-Dreifuss muscular dystrophy (EDMD) is inherited muscle dystrophy often accompanied by cardiac abnormalities in the form of supraventricular arrhythmias, conduction defects and sinus node dysfunction. Cardiac phenotype typically arises years after skeletal muscle presentation, though, could be severe and life-threatening. The defined clinical manifestation with joint contractures, progressive muscle weakness and atrophy, as well as cardiac symptoms are observed by the third decade of life. Still, clinical course and sequence of muscle and cardiac signs may be variable and depends on the genotype. Cardiac abnormalities in patients with EDMD in pediatric age are not commonly seen. Here we describe five patients with different forms of EDMD (X-linked and autosomal-dominant) caused by the mutations in EMD and LMNA genes, presented with early onset of cardiac abnormalities and no prominent skeletal muscle phenotype. The predominant forms of cardiac pathology were atrial arrhythmias and conduction disturbances that progress over time. The presented cases discussed in the light of therapeutic strategy, including radiofrequency ablation and antiarrhythmic devices implantation, and the importance of thorough neurological and genetic screening in pediatric patients presenting with complex heart rhythm disorders.

16.
Biochim Biophys Acta Mol Basis Dis ; 1866(11): 165915, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768677

RESUMO

BACKGROUND: Mutations in desmosomal genes linked to arrhythmogenic cardiomyopathy are commonly associated with Wnt/ß-catenin signaling abnormalities and reduction of the sodium current density. Inhibitors of GSK3B were reported to restore sodium current and improve heart function in various arrhythmogenic cardiomyopathy models, but mechanisms underlying this effect remain unclear. We hypothesized that there is a crosstalk between desmosomal proteins, signaling pathways, and cardiac sodium channels. METHODS AND RESULTS: To reveal molecular mechanisms of arrhythmogenic cardiomyopathy, we established human iPSC-based model of this pathology. iPSC-derived cardiomyocytes from patient carrying two genetic variants in PKP2 gene demonstrated that PKP2 haploinsufficiency due to frameshift variant, in combination with the missense variant expressed from the second allele, was associated with decreased Wnt/ß-catenin activity and reduced sodium current. Different approaches were tested to restore impaired cardiomyocytes functions, including wild type PKP2 transduction, GSK3B inhibition and Wnt/ß-catenin signaling modulation. Inhibition of GSK3B led to the restoration of both Wnt/ß-catenin signaling activity and sodium current density in patient-specific cardiomyocytes while GSK3B activation led to the reduction of sodium current density. Moreover, we found that upon inhibition GSK3B sodium current was restored through Wnt/ß-catenin-independent mechanism. CONCLUSION: We propose that alterations in GSK3B-Wnt/ß-catenin signaling pathways lead to regulation of sodium current implying its role in molecular pathogenesis of arrhythmogenic cardiomyopathy.


Assuntos
Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Placofilinas/metabolismo , Sódio/metabolismo , Eletrofisiologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Mutação/genética , Técnicas de Patch-Clamp , Placofilinas/genética , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
17.
Genes (Basel) ; 11(10)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076350

RESUMO

Hypertrophic cardiomyopathy associated with damaging variants in the ALPK3 gene is a fairly recent discovery, and only a small number of patients have been described thus far. Here we present two additional patients with hypertrophic cardiomyopathy caused by biallelic variants in ALPK3. Genetic investigation was performed using a targeted gene panel consisting of known cardiomyopathy-associated genes and whole exome sequencing. The patients showed a large difference in the age of onset, and both presented with extracardiac features that are often seen in ALPK3 patients. The patient with the later onset showed milder extracardiac symptoms, such as decreased muscle tone and distal muscular dystrophy, but had fast progression of cardiac complications leading to the need of heart transplantation. This study further elucidates the variability of both symptoms and age of onset among these patients.


Assuntos
Cardiomiopatia Hipertrófica/patologia , Heterozigoto , Homozigoto , Proteínas Musculares/genética , Músculo Esquelético/patologia , Mutação , Proteínas Quinases/genética , Adulto , Idade de Início , Cardiomiopatia Hipertrófica/genética , Feminino , Humanos , Recém-Nascido , Masculino , Músculo Esquelético/metabolismo , Fenótipo , Sequenciamento do Exoma , Adulto Jovem
18.
BMC Med Genomics ; 13(1): 175, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33218365

RESUMO

BACKGROUND: Triphalangeal thumb-polysyndactyly syndrome (TPT-PS) is a rare well-defined autosomal dominant disorder characterized by long thumbs with three phalanges combined with pre- and postaxial polydactyly/syndactyly of limbs. By now, the syndrome has been reported in several large families from different ethnic backgrounds, with a high degree of inter- and intrafamilial variability. The genome locus responsible for TPT-PS has been mapped to the 7q36.3 region harboring a long-range sonic hedgehog (SHH) regulatory sequence (ZRS). Both single-nucleotide variants and complete duplications of ZRS were shown to cause TPT-PS and similar limb phenotypes. TPT-PS usually forms as isolated limb pathology not associated with additional malformations, in particular, with cardiovascular abnormalities. CASE PRESENTATION: Here we report on a rare Russian neonatal case of TPT-PS combined with severe congenital heart disease, namely double outlet right ventricle, and microphthalmia with optic disc coloboma. Pedigree analysis revealed TPT-PS of various expressivity in 10 family members throughout five generations, while the cardiac defect and the eye pathology were detected only in the proband. To extend the knowledge on genotype-phenotype spectrum of TPT-PS, the careful clinical and genomic analysis of the family was performed. High-resolution array-based comparative genomic hybridization (array-CGH) revealed a ~ 300 kb microduplication of 7q36.3 locus (arr[GRCh37] 7q36.3(156385810_156684811) × 3) that co-segregated with TPT-PS in the proband and her mother. The duplication encompassed three genes including LMBR1, the intron 5 of which is known to harbor ZRS. Based on whole-exome sequencing data, no additional pathogenic mutations or variants of uncertain clinical significance were found in morbid cardiac genes or genes associated with a microphthalmia/anophthalmia/coloboma spectrum of ocular malformations. CONCLUSIONS: The results support the previous data, indicating that complete ZRS duplication underlies TPT-PS, and suggest a broader phenotypic impact of the 7q36.3 microduplication. Potential involvement of the 7q36.3 microduplication in the patient's cardiac and eye malformations is discussed. However, the contribution of some additional genetic/epigenetic factors to the complex patient`s phenotype cannot be excluded entirely. Further comprehensive functional studies are needed to prove the possible involvement of the 7q36.3 locus in congenital heart disease and eye pathology.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 7/genética , Coloboma/genética , Anormalidades Congênitas/genética , Dupla Via de Saída do Ventrículo Direito/genética , Duplicação Gênica , Disostose Mandibulofacial/genética , Microftalmia/genética , Disco Óptico/anormalidades , Adulto , Cromossomos Humanos Par 7/ultraestrutura , Hibridização Genômica Comparativa , Feminino , Humanos , Lactente , Masculino , Proteínas de Membrana/genética , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Síndrome , Artérias Umbilicais/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA