Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurophysiol ; 125(4): 1213-1222, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33656936

RESUMO

Permanent threshold elevation after noise exposure or aging is caused by loss of sensory cells; however, animal studies show that hair cell loss is often preceded by degeneration of the synapses between sensory cells and auditory nerve fibers. Silencing these neurons is likely to degrade auditory processing and may contribute to difficulties understanding speech in noisy backgrounds. Reduction of suprathreshold ABR amplitudes can be used to quantify synaptopathy in inbred mice. However, ABR amplitudes are highly variable in humans, and thus more challenging to use. Since noise-induced neuropathy preferentially targets fibers with high thresholds and low spontaneous rate and because phase locking to temporal envelopes is particularly strong in these fibers, measuring envelope following responses (EFRs) might be a more robust measure of cochlear synaptopathy. A recent auditory model further suggests that modulation of carrier tones with rectangular envelopes should be less sensitive to cochlear amplifier dysfunction and, therefore, a better metric of cochlear neural damage than sinusoidal amplitude modulation. In this study, we measure performance scores on a variety of difficult word-recognition tasks among listeners with normal audiograms and assess correlations with EFR magnitudes to rectangular versus sinusoidal modulation. Higher harmonics of EFR magnitudes evoked by a rectangular-envelope stimulus were significantly correlated with word scores, whereas those evoked by sinusoidally modulated tones did not. These results support previous reports that individual differences in synaptopathy may be a source of speech recognition variability despite the presence of normal thresholds at standard audiometric frequencies.NEW & NOTEWORTHY Recent studies suggest that millions of people may be at risk of permanent impairment from cochlear synaptopathy, the age-related and noise-induced degeneration of neural connections in the inner ear. This study examines electrophysiological responses to stimuli designed to improve detection of neural damage in subjects with normal hearing sensitivity. The resultant correlations with word recognition performance are consistent with a contribution of cochlear neural damage to deficits in hearing in noise abilities.


Assuntos
Envelhecimento/fisiologia , Audiometria , Limiar Auditivo/fisiologia , Cóclea/fisiologia , Nervo Coclear/fisiologia , Percepção da Fala/fisiologia , Estimulação Acústica , Adolescente , Adulto , Fatores Etários , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ruído , Reconhecimento Psicológico/fisiologia , Adulto Jovem
2.
JASA Express Lett ; 3(2): 024401, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36858988

RESUMO

In search of biomarkers for cochlear neural degeneration (CND) in electrocochleography from humans with normal thresholds, we high-pass and low-pass filtered the responses to separate contributions of auditory-nerve action potentials (N1) from hair-cell summating potentials (SP). The new N1 measure is better correlated with performance on difficult word-recognition tasks used as a proxy for CND. Furthermore, the paradoxical correlation between larger SPs and worse word scores, observed with classic electrocochleographic analysis, disappears with the new metric. Classic SP is simultaneous with and opposite in phase to an early neural contribution, and filtering separates the sources to eliminate this interference.


Assuntos
Degeneração Neural , Doenças do Nervo Vestibulococlear , Humanos , Audiometria de Resposta Evocada , Biomarcadores , Nervo Coclear
3.
Sci Rep ; 13(1): 19870, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036538

RESUMO

Tinnitus, reduced sound-level tolerance, and difficulties hearing in noisy environments are the most common complaints associated with sensorineural hearing loss in adult populations. This study aims to clarify if cochlear neural degeneration estimated in a large pool of participants with normal audiograms is associated with self-report of tinnitus using a test battery probing the different stages of the auditory processing from hair cell responses to the auditory reflexes of the brainstem. Self-report of chronic tinnitus was significantly associated with (1) reduced cochlear nerve responses, (2) weaker middle-ear muscle reflexes, (3) stronger medial olivocochlear efferent reflexes and (4) hyperactivity in the central auditory pathways. These results support the model of tinnitus generation whereby decreased neural activity from a damaged cochlea can elicit hyperactivity from decreased inhibition in the central nervous system.


Assuntos
Zumbido , Doenças do Nervo Vestibulococlear , Adulto , Humanos , Limiar Auditivo/fisiologia , Audição/fisiologia , Cóclea/inervação , Percepção Auditiva
4.
Phys Rev Lett ; 108(13): 138104, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22540730

RESUMO

For localization of a sound source, animals and humans process the microsecond interaural time differences of arriving sound waves. How nervous systems, consisting of elements with time constants of about and more than 1 ms, can reach such high precision is still an open question. In this Letter we present a hypothesis and show theoretical and computational evidence that a rather large population of slowly integrating neurons with inhibitory and excitatory inputs (EI neurons) can detect minute temporal disparities in input signals which are significantly less than any time constant in the system.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Humanos , Neurônios/citologia , Localização de Som/fisiologia
5.
Hear Res ; 424: 108569, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35961207

RESUMO

It is well known that ageing and noise exposure are important causes of sensorineural hearing loss, and can result in damage of the outer hair cells or other structures of the inner ear, including synaptic damage to the auditory nerve (AN), i.e., cochlear synaptopathy (CS). Despite the suspected high prevalence of CS among people with self-reported hearing difficulties but seemingly normal hearing, conventional hearing-aid algorithms do not compensate for the functional deficits associated with CS. Here, we present and evaluate a number of auditory signal-processing strategies designed to maximally restore AN coding for listeners with CS pathologies. We evaluated our algorithms in subjects with and without suspected age-related CS to assess whether physiological and behavioural markers associated with CS can be improved. Our data show that after applying our algorithms, envelope-following responses and perceptual amplitude-modulation sensitivity were consistently enhanced in both young and older listeners. Speech-in-noise intelligibility showed small improvements after processing but mostly for young normal-hearing participants, with median improvements of up to 8.3%. Since our hearing-enhancement strategies were designed to optimally drive the AN fibres, they were able to improve temporal-envelope processing for listeners both with and without suspected CS. Our proposed algorithms can be rapidly executed and can thus extend the application range of current hearing aids and hearables, while leaving sound amplification unaffected.


Assuntos
Cóclea , Percepção da Fala , Limiar Auditivo/fisiologia , Cóclea/fisiologia , Nervo Coclear , Audição/fisiologia , Humanos , Ruído/efeitos adversos
6.
Sci Rep ; 12(1): 8929, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739134

RESUMO

The current gold standard of clinical hearing assessment includes a pure-tone audiogram combined with a word recognition task. This retrospective study tests the hypothesis that deficits in word recognition that cannot be explained by loss in audibility or cognition may reflect underlying cochlear nerve degeneration (CND). We collected the audiological data of nearly 96,000 ears from patients with normal hearing, conductive hearing loss (CHL) and a variety of sensorineural etiologies including (1) age-related hearing loss (ARHL); (2) neuropathy related to vestibular schwannoma or neurofibromatosis of type 2; (3) Ménière's disease; (4) sudden sensorineural hearing loss (SSNHL), (5) exposure to ototoxic drugs (carboplatin and/or cisplatin, vancomycin or gentamicin) or (6) noise damage including those with a 4-kHz "noise notch" or reporting occupational or recreational noise exposure. Word recognition was scored using CID W-22 monosyllabic word lists. The Articulation Index was used to predict the speech intelligibility curve using a transfer function for CID W-22. The level at which maximal intelligibility was predicted was used as presentation level (70 dB HL minimum). Word scores decreased dramatically with age and thresholds in all groups with SNHL etiologies, but relatively little in the conductive hearing loss group. Discrepancies between measured and predicted word scores were largest in patients with neuropathy, Ménière's disease and SSNHL, intermediate in the noise-damage and ototoxic drug groups, and smallest in the ARHL group. In the CHL group, the measured and predicted word scores were very similar. Since word-score predictions assume that audiometric losses can be compensated by increasing stimulus level, their accuracy in predicting word score for CHL patients is unsurprising. The lack of a strong age effect on word scores in CHL shows that cognitive decline is not a major factor in this test. Amongst the possible contributions to word score discrepancies, CND is a prime candidate: it should worsen intelligibility without affecting thresholds and has been documented in human temporal bones with SNHL. Comparing the audiological trends observed here with the existing histopathological literature supports the notion that word score discrepancies may be a useful CND metric.


Assuntos
Perda Auditiva Neurossensorial , Doença de Meniere , Presbiacusia , Percepção da Fala , Audiometria de Tons Puros , Perda Auditiva Condutiva , Humanos , Estudos Retrospectivos , Percepção da Fala/fisiologia
7.
Hear Res ; 400: 108132, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33333426

RESUMO

Auditory de-afferentation, a permanent reduction in the number of inner-hair-cells and auditory-nerve synapses due to cochlear damage or synaptopathy, can reliably be quantified using temporal bone histology and immunostaining. However, there is an urgent need for non-invasive markers of synaptopathy to study its perceptual consequences in live humans and to develop effective therapeutic interventions. While animal studies have identified candidate auditory-evoked-potential (AEP) markers for synaptopathy, their interpretation in humans has suffered from translational issues related to neural generator differences, unknown hearing-damage histopathologies or lack of measurement sensitivity. To render AEP-based markers of synaptopathy more sensitive and differential to the synaptopathy aspect of sensorineural hearing loss, we followed a combined computational and experimental approach. Starting from the known characteristics of auditory-nerve physiology, we optimized the stimulus envelope to stimulate the available auditory-nerve population optimally and synchronously to generate strong envelope-following-responses (EFRs). We further used model simulations to explore which stimuli evoked a response that was sensitive to synaptopathy, while being maximally insensitive to possible co-existing outer-hair-cell pathologies. We compared the model-predicted trends to AEPs recorded in younger and older listeners (N=44, 24f) who had normal or impaired audiograms with suspected age-related synaptopathy in the older cohort. We conclude that optimal stimulation paradigms for EFR-based quantification of synaptopathy should have sharply rising envelope shapes, a minimal plateau duration of 1.7-2.1 ms for a 120-Hz modulation rate, and inter-peak intervals which contain near-zero amplitudes. From our recordings, the optimal EFR-evoking stimulus had a rectangular envelope shape with a 25% duty cycle and a 95% modulation depth. Older listeners with normal or impaired audiometric thresholds showed significantly reduced EFRs, which were consistent with how (age-induced) synaptopathy affected these responses in the model.


Assuntos
Cóclea , Estimulação Acústica , Animais , Limiar Auditivo , Nervo Coclear , Potenciais Evocados Auditivos do Tronco Encefálico , Humanos
8.
Hear Res ; 392: 107979, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32447097

RESUMO

The envelope following response (EFR) has been proposed as a non-invasive marker of synaptopathy in animal models. However, its amplitude is affected by the spread of basilar-membrane excitation and other coexisting sensorineural hearing deficits. This study aims to (i) improve frequency specificity of the EFR by introducing a derived-band EFR (DBEFR) technique and (ii) investigate the effect of lifetime noise exposure, age and outer-hair-cell (OHC) damage on DBEFR magnitudes. Additionally, we adopt a modelling approach to validate the frequency-specificity of the DBEFR and test how different aspects of sensorineural hearing loss affect peripheral generators. The combined analysis of simulations and experimental data proposes that the DBEFRs extracted from the [2-6]-kHz frequency band is a sensitive and frequency-specific measure of synaptopathy in humans. Individual variability in DBEFR magnitudes among listeners with normal audiograms was explained by their self-reported amount of experienced lifetime noise-exposure and corresponded to amplitude variability predicted by synaptopathy. Older listeners consistently had reduced DBEFR magnitudes in comparison to young normal-hearing listeners, in correspondence to how age-induced synaptopathy affects EFRs and compromises temporal envelope encoding. To a lesser degree, OHC damage was also seen to affect the DBEFR magnitude, hence the DBEFR metric should ideally be combined with a sensitive marker of OHC damage to offer a differential diagnosis of synaptopathy in listeners with impaired audiograms.


Assuntos
Percepção Auditiva , Nervo Coclear/fisiopatologia , Perda Auditiva Neurossensorial/fisiopatologia , Audição , Estimulação Acústica , Adolescente , Adulto , Fatores Etários , Limiar Auditivo , Bélgica , Estudos de Casos e Controles , Nervo Coclear/patologia , Simulação por Computador , Feminino , Alemanha , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Ruído/efeitos adversos , Adulto Jovem
9.
Hear Res ; 360: 55-75, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29472062

RESUMO

Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features.


Assuntos
Vias Auditivas/fisiopatologia , Potenciais Evocados Auditivos , Perda Auditiva/fisiopatologia , Audição , Modelos Neurológicos , Estimulação Acústica , Percepção Auditiva , Simulação por Computador , Perda Auditiva/psicologia , Humanos , Pessoas com Deficiência Auditiva/psicologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA