Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047318

RESUMO

The pathogenic variant E92K (c.274G > A) of the CFTR gene is rare in America and Europe, but it is common for people with cystic fibrosis from Russia and Turkey. We studied the effect of the E92K genetic variant on the CFTR function. The function of the CFTR channel was studied using the intestinal current measurements (ICM) method. The effects of CFTR modulators on the restoration of the CFTR function were studied in the model of intestinal organoids. To assess the effect of E92K on pre-mRNA splicing, the RT-PCR products obtained from patients' intestinal organoid cultures were analyzed. Patients with the genetic variant E92K are characterized by an older age of diagnosis compared to homozygotes F508del and a high frequency of pancreatic sufficiency. The results of the sweat test and the ICM method showed partial preservation of the function of the CFTR channel. Functional analysis of CFTR gene expression revealed a weak effect of the E92K variant on mRNA-CFTR splicing. Lumacaftor (VX-809) has been shown to restore CFTR function in an intestinal organoid model, which allows us to consider the E92K variant as a promising target for therapy with CFTR correctors.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Turquia , Benzodioxóis/farmacologia , Federação Russa , Mutação
2.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499056

RESUMO

Gene therapy is one of the most promising approaches in regenerative medicine. Gene-activated matrices provide stable gene expression and the production of osteogenic proteins in situ to stimulate osteogenesis and bone repair. In this study, we developed new gene-activated matrices based on polylactide granules (PLA) impregnated with BMP2 polyplexes and included in chitosan hydrogel or PRP-based fibrin hydrogel. The matrices showed high biocompatibility both in vitro with mesenchymal stem cells and in vivo when implanted intramuscularly in rats. The use of porous PLA granules allowed the inclusion of a high concentration of polyplexes, and the introduction of the granules into hydrogel provided the gradual release of the plasmid constructs. All gene-activated matrices showed transfecting ability and ensured long-term gene expression and the production of target proteins in vitro. At the same time, the achieved concentration of BMP-2 was sufficient to induce osteogenic differentiation of MSCs. When implanted into critical-size calvarial defects in rats, all matrices with BMP2 polyplexes led to new bone formation. The most significant effect on osteoinduction was observed for the PLA/PRP matrices. Thus, the developed gene-activated matrices were shown to be safe and effective osteoplastic materials. PLA granules and PRP-based fibrin hydrogel containing BMP2 polyplexes were shown to be the most promising for future applications in bone regeneration.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Ratos , Animais , Osteogênese/genética , Quitosana/metabolismo , Hidrogéis/farmacologia , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea/genética , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Fibrina/metabolismo
3.
Molecules ; 26(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430198

RESUMO

Compositions based on chitosan/ß-glycerophosphate hydrogels with highly porous polylactide granules can be used to obtain moldable bone graft materials that have osteoinductive and osteoconductive properties. To eliminate the influence of such characteristics as chain length, degree of purification, and molecular weight on a designed material, the one-stock chitosan sample was reacetylated to degrees of deacetylation (DD%) of 19.5, 39, 49, 55, and 56. A study of the chitosan/ß-glycerophosphate hydrogel with chitosan of a reduced DD% showed that a low degree of deacetylation increased the MSCs (multipotent stromal cells) viability rate in vitro and reduced the leukocyte infiltration in subcutaneous implantation to Wistar rats in vivo. The addition of 12 wt% polylactide granules resulted in optimal composite mechanical and moldable properties, and increased the modulus of elasticity of the hydrogel-based material by approximately 100 times. Excessive filling of the material with PLA (polylactide) granules (more than 20%) led to material destruction at a ~10% strain. Osteoinductive and osteoconductive properties of the chitosan hydrogel-based material with reacetylated chitosan (39 DD%) and highly porous polylactide granules impregnated with BMP-2 (bone morphogenetic protein-2) have been demonstrated in models of orthotopic and ectopic bone formation. When implanted into a critical-size calvarial defect in rats, the optimal concentration of BMP-2 was 10 µg/mL: bone tissue areas filled the entire material's thickness. Implantation of the material with 50 µg/mL BMP-2 was accompanied with excessive growth of bone tissue and material displacement beyond the defect. Significant osteoinductive and osteoconductive properties of the material with 10 µg/mL of BMP-2 were also shown in subcutaneous implantation.


Assuntos
Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/metabolismo , Quitosana/química , Osteogênese , Poliésteres/química , Poliésteres/metabolismo , Acetilação , Animais , Fenômenos Químicos , Imuno-Histoquímica , Masculino , Ratos
4.
Saudi Dent J ; 36(6): 855-862, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38883899

RESUMO

The restoration of bone defects resulting from tooth loss, periodontal disease, severe trauma, tumour resection and congenital malformations is a crucial task in dentistry and maxillofacial surgery. Growth factor- and gene-activated bone graft substitutes can be used instead of traditional materials to solve these problems. New materials will overcome the low efficacy and difficulties associated with the use of traditional bone substitutes in complex situations. One of the most well-studied active components for bone graft substitutes is bone morphogenetic protein-2 (BMP-2), which has strong osteoinductive properties. The aim of this review was to examine the use of BMP-2 protein and gene therapy for bone regeneration in the oral and maxillofacial region and to discuss its future use.

5.
Gels ; 9(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37102926

RESUMO

Natural and synthetic hydrogel scaffolds containing bioactive components are increasingly used in solving various tissue engineering problems. The encapsulation of DNA-encoding osteogenic growth factors with transfecting agents (e.g., polyplexes) into such scaffold structures is one of the promising approaches to delivering the corresponding genes to the area of the bone defect to be replaced, providing the prolonged expression of the required proteins. Herein, a comparative assessment of both in vitro and in vivo osteogenic properties of 3D printed sodium alginate (SA) hydrogel scaffolds impregnated with model EGFP and therapeutic BMP-2 plasmids was demonstrated for the first time. The expression levels of mesenchymal stem cell (MSC) osteogenic differentiation markers Runx2, Alpl, and Bglap were evaluated by real-time PCR. Osteogenesis in vivo was studied on a model of a critical-sized cranial defect in Wistar rats using micro-CT and histomorphology. The incorporation of polyplexes comprising pEGFP and pBMP-2 plasmids into the SA solution followed by 3D cryoprinting does not affect their transfecting ability compared to the initial compounds. Histomorphometry and micro-CT analysis 8 weeks after scaffold implantation manifested a significant (up to 46%) increase in new bone volume formation for the SA/pBMP-2 scaffolds compared to the SA/pEGFP ones.

6.
Cells ; 12(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37443796

RESUMO

Adenovirus-mediated gene therapy is a promising tool in bone regenerative medicine. In this work, gene-activated matrices (GAMs) composed of (1) polylactide granules (PLA), which serve as a depot for genetic constructs or matrices for cell attachment, (2) a PRP-based fibrin clot, which is a source of growth factors and a binding gel, and (3) a BMP2 gene providing osteoinductive properties were studied. The study aims to compare the effectiveness of in vivo and ex vivo gene therapy based on adenoviral constructs with the BMP2 gene, PLA particles, and a fibrin clot for bone defect healing. GAMs with Ad-BMP2 and MSC(Ad-BMP2) show osteoinductive properties both in vitro and in vivo. However, MSCs incubated with GAMs containing transduced cells showed a more significant increase in osteopontin gene expression, protein production, Alpl activity, and matrix mineralization. Implantation of the studied matrices into critical-size calvarial defects after 56 days promotes the formation of young bone. The efficiency of neoosteogenesis and the volume fraction of newly formed bone tissue are higher with PLA/PRP-MSC(Ad-BMP2) implantation (33%) than PLA/PRP-Ad-BMP2 (28%). Thus, ex vivo adenoviral gene therapy with the BMP2 gene has proven to be a more effective approach than the in vivo delivery of gene constructs for bone regeneration.


Assuntos
Adenoviridae , Osteogênese , Osteogênese/genética , Adenoviridae/genética , Regeneração Óssea/genética , Terapia Genética , Fibrina
7.
Dent J (Basel) ; 10(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35735649

RESUMO

BACKGROUND: Mineralized lesions of the jaws are often found incidentally on radiographs and computed tomography. Most of them are benign, and only a few rare cases are associated with malignant transformation. However, there is little clinical data on successful rehabilitation with implants in patients with mineralized lesions. This narrative review aimed to study the efficiency and safety of dental implantation in the area of hyperdense lesions. MATERIALS AND METHODS: A PubMed, Google Scholar, and Science Direct database search was carried out with keywords and manually. RESULTS: The literature exploration identified 323 articles; only 19 of them matched the search criteria and reported cases about dental implantation in the lesion area. It has been shown that in 84.2% of described cases, dental implantation was successful: in the osteoid osteoma, odontoma, cementoblastoma, idiopathic osteosclerosis, and condensing osteitis areas dental implantation was performed without any complications. The possibility of lesion recurrence and implant failure limited the use of dental implants in the area of osteoblastoma and cemento-osseous dysplasia. Although most cases of dental implantation in hyperdense jaw lesions were successful and were not accompanied by complications, further research is needed.

8.
Gels ; 8(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35877506

RESUMO

Gene therapy is one of the most promising approaches in regenerative medicine to restore damaged tissues of various types. However, the ability to control the dose of bioactive molecules in the injection site can be challenging. The combination of genetic constructs, bioresorbable material, and the 3D printing technique can help to overcome these difficulties and not only serve as a microenvironment for cell infiltration but also provide localized gene release in a more sustainable way to induce effective cell differentiation. Herein, the cell transfection with plasmid DNA directly incorporated into sodium alginate prior to 3D printing was investigated both in vitro and in vivo. The 3D cryoprinting ensures pDNA structure integrity and safety. 3D printed gene-activated scaffolds (GAS) mediated HEK293 transfection in vitro and effective synthesis of model EGFP protein in vivo, thereby allowing the implementation of the developed GAS in future tissue engineering applications.

9.
Polymers (Basel) ; 13(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34833275

RESUMO

In dentistry, maxillofacial surgery, traumatology, and orthopedics, there is a need to use osteoplastic materials that have not only osteoinductive and osteoconductive properties but are also convenient for use. In the study, compositions based on collagen hydrogel were developed. Polylactide granules (PLA) or a traditional bone graft, a mixture of hydroxyapatite and ß-tricalcium phosphate (HAP/ß-TCP), were used for gel filling to improve mechanical osteoconductive properties of compositions. The mechanical tests showed that collagen hydrogels filled with 12 wt% highly porous PLA granules (elastic modulus 373 ± 55 kPa) or 35 wt% HAP/ß-TCP granules (elastic modulus 451 ± 32 kPa) had optimal manipulative properties. All composite components were cytocompatible. The cell's viability was above 90%, and the components' structure facilitated the cell's surface adhesion. The bone morphogenetic protein-2 (BMP-2) provided osteoinductive composition properties. It was impregnated directly into the collagen hydrogel with the addition of fibronectin or inside porous PLA granules. The implantation of a collagen hydrogel with BMP-2 and PLA granules into a critical-size calvarial defect in rats led to the formation of the most significant volume of bone tissue: 61 ± 15%. It was almost 2.5 times more than in the groups where a collagen-fibronectin hydrogel with a mixture of HAP/ß-TCP (25 ± 7%) or a fibronectin-free composition with porous PLA granules impregnated with BMP-2 (23 ± 8%) were used. Subcutaneous implantation of the compositions also showed their high biocompatibility and osteogenic potential in the absence of a bone environment. Thus, the collagen-fibronectin hydrogel with BMP-2 and PLA granules has optimal biocompatibility, osteogenic, and manipulative properties.

10.
Rev Sci Instrum ; 91(3): 033304, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259941

RESUMO

This work is a part of the development of a laser ion source (LIS) for multiply charged ion injectors. This experiment is devoted to the investigation of the effect of a metal grid on the extracted ion characteristics. The energy spectra of the ions in the plasma expanding into a drift tube with and without a grid have been compared. Plasmas of two different target materials, carbon and tungsten, were generated by the CO2 laser pulses with the focal power density on the target of about 1011 W/cm2. The time-of-flight method with an electrostatic energy analyzer installed just behind the grid is used to measure the charge states and energy distributions of ions. A significant effect of the grid on the ion energy distributions has been observed. This effect depends strongly on the ion mass and should be taken into account when designing a LIS, especially in the case of heavy ions.

11.
JPRAS Open ; 18: 108-124, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32158845

RESUMO

PURPOSE: To analyze the soft tissue reaction of 'Titanium Silk' mesh implant in comparison with 'Parietene Progrip' and 'Prolene' mesh implants for the reinforcement and augmentation of soft tissues to improve the results of static correction in Facial Paralysis and other defects of Maxillofacial region. MATERIALS AND METHODS: Under standard laboratory conditions, 89 mice were divided into 4 groups: a control group of 5 mice; first group of 28 mice with Titanium mesh implant, second group of 28 mice with semi-resorbable 'Parietene Progrip' implant and third group of 28 mice with 'Prolene' implant. Under inhalational anesthesia with ethyl ether at days 7, 14, 30 and 60, seven mice from each experimental group underwent Gross and histological analysis of the mesh structures for the following characteristics: Macrophage Infiltration, Multinucleated Macrophages, Meshwork around the implant fibers, Connective tissue proliferation, Angiogenesis and Fibroblasts. RESULTS: Histological analysis revealed a significantly less pronounced inflammatory response to Titanium mesh implant resulting in the formation of a more delicate connective tissue network around the mesh elements. CONCLUSION: The experiment clearly demonstrated the cellular and tissue responses to different implantable mesh materials at various times of its integration. It revealed that the titanium mesh is the most bio-inert alloplastic material suitable for reinforcement of soft tissue augmentation and to prioritize it's use in static correction of facial paralysis and other defects of the maxillofacial region. A postoperative timeframe of 30 days is considered appropriate for the adequate formation of connective tissue around the mesh elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA