RESUMO
Mycobacterium tuberculosis continues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that M. tuberculosis utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that M. tuberculosis induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease. In a macaque model of inhalation TB, suppression of IDO activity reduced bacterial burden, pathology, and clinical signs of TB disease, leading to increased host survival. This increased protection was accompanied by increased lung T cell proliferation, induction of inducible bronchus-associated lymphoid tissue and correlates of bacterial killing, reduced checkpoint signaling, and the relocation of effector T cells to the center of the granulomata. The enhanced killing of M. tuberculosis in macrophages in vivo by CD4+ T cells was also replicated in vitro, in cocultures of macaque macrophages and CD4+ T cells. Collectively, these results suggest that there exists a potential for using IDO inhibition as an effective and clinically relevant host-directed therapy for TB.
Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Triptofano/imunologia , Tuberculoma/imunologia , Tuberculose Pulmonar/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Granuloma/imunologia , Granuloma/patologia , Pulmão/patologia , Macaca mulatta , Macrófagos/imunologia , Macrófagos/patologia , Mycobacterium tuberculosis/patogenicidade , Tuberculoma/patologia , Tuberculose Pulmonar/patologiaRESUMO
Failure to replace Bacille Calmette-Guerin vaccines with efficacious anti-tuberculosis (TB) vaccines have prompted outside-the-box thinking, including pulmonary vaccination to elicit local immunity. Inhalational MtbΔsigH, a stress-response-attenuated strain, protected against lethal TB in macaques. While live mycobacterial vaccines show promising efficacy, HIV co-infection and the resulting immunodeficiency prompts safety concerns about their use. We assessed the persistence and safety of MtbΔsigH, delivered directly to the lungs, in the setting of HIV co-infection. Macaques were aerosol-vaccinated with ΔsigH and subsequently challenged with SIVmac239. Bronchoalveolar lavage and tissues were sampled for mycobacterial persistence, pathology, and immune correlates. Only 35% and 3.5% of lung samples were positive for live bacilli and granulomas, respectively. Our results therefore suggest that the nonpathologic infection of macaque lungs by ΔsigH was not reactivated by simian immunodeficiency virus, despite high viral levels and massive ablation of pulmonary CD4+ T cells. Protective pulmonary responses were retained, including vaccine-induced bronchus-associated lymphoid tissue and CD8+ effector memory T cells. Despite acute simian immunodeficiency virus infection, all animals remained asymptomatic of pulmonary TB. These findings highlight the efficacy of mucosal vaccination via this attenuated strain and will guide its further development to potentially combat TB in HIV-endemic areas. Our results also suggest that a lack of pulmonary pathology is a key correlate of the safety of live mycobacterial vaccines.
Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Vacinas contra a Tuberculose/farmacologia , Tuberculose/prevenção & controle , Ativação Viral/efeitos dos fármacos , Administração por Inalação , Animais , Coinfecção , HIV , Macaca mulatta , Mycobacterium tuberculosis , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/fisiologia , Tuberculose/complicações , Vacinas Atenuadas/farmacologiaRESUMO
Although it is accepted that the environment within the granuloma profoundly affects Mycobacterium tuberculosis (Mtb) and infection outcome, our ability to understand Mtb gene expression in these niches has been limited. We determined intragranulomatous gene expression in human-like lung lesions derived from nonhuman primates with both active tuberculosis (ATB) and latent TB infection (LTBI). We employed a non-laser-based approach to microdissect individual lung lesions and interrogate the global transcriptome of Mtb within granulomas. Mtb genes expressed in classical granulomas with central, caseous necrosis, as well as within the caseum itself, were identified and compared with other Mtb lesions in animals with ATB (n = 7) or LTBI (n = 7). Results were validated using both an oligonucleotide approach and RT-PCR on macaque samples and by using human TB samples. We detected approximately 2,900 and 1,850 statistically significant genes in ATB and LTBI lesions, respectively (linear models for microarray analysis, Bonferroni corrected, P < 0.05). Of these genes, the expression of approximately 1,300 (ATB) and 900 (LTBI) was positively induced. We identified the induction of key regulons and compared our results to genes previously determined to be required for Mtb growth. Our results indicate pathways that Mtb uses to ensure its survival in a highly stressful environment in vivo. A large number of genes is commonly expressed in granulomas with ATB and LTBI. In addition, the enhanced expression of the dormancy survival regulon was a key feature of lesions in animals with LTBI, stressing its importance in the persistence of Mtb during the chronic phase of infection.
Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Granuloma/microbiologia , Viabilidade Microbiana/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Anaerobiose , Animais , Perfilação da Expressão Gênica , Granuloma/patologia , Pulmão/microbiologia , Pulmão/patologia , Macaca , Reação em Cadeia da Polimerase em Tempo Real , Regulon/genética , Reprodutibilidade dos Testes , Transcriptoma/genética , Tuberculose/genética , Tuberculose/microbiologia , Tuberculose/patologiaRESUMO
Mycobacterium tuberculosis (Mtb) characteristically causes an asymptomatic infection. While this latent tuberculosis infection (LTBI) is not contagious, reactivation to active tuberculosis disease (TB) causes the patient to become infectious. A vaccine has existed for TB for a century, while drug treatments have been available for over 70 years; despite this, TB remains a major global health crisis. Understanding the factors which allow the bacillus to control responses to host stress and mechanisms leading to latency are critical for persistence. Similarly, molecular switches which respond to reactivation are important. Recently, research in the field has sought to focus on reactivation, employing system-wide approaches and animal models. Here, we describe the current work that has been done to elucidate the mechanisms of reactivation and stop reactivation in its tracks.
Assuntos
Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Animais , Antituberculosos/uso terapêutico , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Humanos , Tuberculose Latente , Modelos Animais , Tuberculose/prevenção & controle , Tuberculose/terapiaRESUMO
Mycobacterium tuberculosis (Mtb) infections cause tuberculosis (TB), an infectious disease which causes â¼1.5 million deaths annually. The ability of this pathogen to evade, escape and encounter immune surveillance is fueled by its adaptability. Thus, Mtb induces a transition in its transcriptome in response to environmental changes. Global transcriptome profiling has been key to our understanding of how Mtb responds to the different stress conditions it faces during its life cycle. While this was initially achieved using microarray technology, RNAseq is now widely employed. It is important to understand the correlation between the large amount of microarray based transcriptome data, which continues to shape our understanding of Mtb stress networks, and newer data being generated using RNAseq. We assessed how well the two platforms correlate using three well-defined stress conditions: diamide, hypoxia, and re-aeration. The data used here was generated by different individuals over time using distinct samples, providing a stringent test of platform correlation. While correlation between microarrays and sequencing was high upon diamide treatment, which causes a rapid reprogramming of the transcriptome, RNAseq allowed a better definition of the hypoxic response, characterized by subtle changes in the magnitude of gene-expression. RNAseq also allows for the best cross-platform reproducibility.