Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38475263

RESUMO

This study focuses on evaluating the fatigue life performance of 3D-printed polymer composites produced through the fused deposition modelling (FDM) technique. Fatigue life assessment is essential in designing components for industries like aerospace, medical, and automotive, as it provides an estimate of the component's safe service life during operation. While there is a lack of detailed research on the fatigue behaviour of 3D-printed polymer composites, this paper aims to fill that gap. Fatigue tests were conducted on the 3D-printed polymer composites under various loading conditions, and static (tensile) tests were performed to determine their ultimate tensile strength. The fatigue testing load ranged from 80% to 98% of the total static load. The results showed that the fatigue life of the pressed samples using a platen press was significantly better than that of the non-pressed samples. Samples subjected to fatigue testing at 80% of the ultimate tensile strength (UTS) did not experience failure even after 1 million cycles, while samples tested at 90% of UTS failed after 50,000 cycles, with the failure being characterized as splitting and clamp area failure. This study also included a lap shear analysis of the 3D-printed samples, comparing those that were bonded using a two-part Araldite glue to those that were fabricated as a single piece using the Markforged Mark Two 3D printer. In summary, this study sheds light on the fatigue life performance of 3D-printed polymer composites fabricated using the FDM technique. The results suggest that the use of post-printing platen press improved the fatigue life of 3D-printed samples, and that single printed samples have better strength of about 265 MPa than adhesively bonded samples in which the strength was 56 MPa.

2.
Materials (Basel) ; 13(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228158

RESUMO

The influence of cutting forces during the machining of titanium alloys has attained prime attention in selecting the optimal cutting conditions to improve the surface integrity of medical implants and biomedical devices. So far, it has not been easy to explain the chip morphology of Ti6Al4V and the thermo-mechanical interactions involved during the cutting process. This paper investigates the chip configuration of the Ti6Al4V alloy under dry milling conditions at a macro and micro scale by employing the Johnson-Cook material damage model. 2D modeling, numerical milling simulations, and post-processing were conducted using the Abaqus/Explicit commercial software. The uncut chip geometry was modeled with variable thicknesses to accomplish the macro to micro-scale cutting by adapting a trochoidal path. Numerical results, predicted for the cutting reaction forces and shearing zone temperatures, were found in close approximation to experimental ones with minor deviations. Further analyses evaluated the influence of cutting speeds and contact friction coefficients over the chip flow stress, equivalent plastic strain, and chip morphology. The methodology developed can be implemented in resolving the industrial problems in the biomedical sector for predicting the chip morphology of the Ti6Al4V alloy, fracture mechanisms of hard-to-cut materials, and the effects of different cutting parameters on workpiece integrity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA