RESUMO
INTRODUCTION: There is an ongoing scientific discussion, that anti-cancer effects induced by radiofrequency (RF)-hyperthermia might not be solely attributable to subsequent temperature elevations at the tumor site but also to non-temperature-induced effects. The exact molecular mechanisms behind said potential non-thermal RF effects remain largely elusive, however, limiting their therapeutical targetability. OBJECTIVE: Therefore, we aim to provide an overview of the current literature on potential non-temperature-induced molecular effects within cancer cells in response to RF-electromagnetic fields (RF-EMF). MATERIAL AND METHODS: This literature review was conducted following the PRISMA guidelines. For this purpose, a MeSH-term-defined literature search on MEDLINE (PubMed) and Scopus (Elsevier) was conducted on March 23rd, 2024. Essential criteria herein included the continuous wave RF-EMF nature (3 kHz - 300 GHz) of the source, the securing of temperature-controlled circumstances within the trials, and the preclinical nature of the trials. RESULTS: Analysis of the data processed in this review suggests that RF-EMF radiation of various frequencies seems to be able to induce significant non-temperature-induced anti-cancer effects. These effects span from mitotic arrest and growth inhibition to cancer cell death in the form of autophagy and apoptosis and appear to be mostly exclusive to cancer cells. Several cellular mechanisms were identified through which RF-EMF radiation potentially imposes its anti-cancer effects. Among those, by reviewing the included publications, we identified RF-EMF-induced ion channel activation, altered gene expression, altered membrane potentials, membrane oscillations, and blebbing, as well as changes in cytoskeletal structure and cell morphology. CONCLUSION: The existent literature points toward a yet untapped therapeutic potential of RF-EMF treatment, which might aid in damaging cancer cells through bio-electrical and electro-mechanical molecular mechanisms while minimizing adverse effects on healthy tissue cells. Further research is imperative to definitively confirm non-thermal EMF effects as well as to determine optimal cancer-type-specific RF-EMF frequencies, field intensities, and exposure intervals.
Assuntos
Campos Eletromagnéticos , Neoplasias , Humanos , Neoplasias/radioterapia , Ondas de Rádio , AnimaisRESUMO
PURPOSE: The combination of hyperthermia (HT) with radio(chemo)therapy or chemotherapy (CT) is an established treatment strategy for specific indications. Its application in routine clinical practice in Europe depends on regulatory and local conditions. We conducted a survey among European clinical centers to determine current practice of HT. METHODS: A questionnaire with 22 questions was sent to 24 European HT centers. The questions were divided into two main categories. The first category assessed how many patients are treated with HT in combination with radio(chemo)therapy or CT for specific indications per year. The second category addressed which hyperthermia parameters are recorded. Analysis was performed using descriptive methods. RESULTS: The response rate was 71% (17/24) and 16 centers were included in this evaluation. Annually, these 16 centers treat approximately 637 patients using HT in combination with radio(chemo)therapy or CT. On average, 34% (range: 3-100%) of patients are treated in clinical study protocols. Temperature readings and the time interval between HT and radio(chemo)therapy or CT are recorded in 13 (81%) and 9 (56%) centers, respectively. The thermal dose quality parameter "cumulative equivalent minutes at 43⯰C" (CEM43°C) is only evaluated in five (31%) centers for each HT session. With regard to treatment sequence, 8 (50%) centers administer HT before radio(chemo)therapy and the other 8 in the reverse order. CONCLUSION: There is a significant heterogeneity among European HT centers as to the indications treated and the recording of thermometric parameters. More evidence from clinical studies is necessary to achieve standardization of HT practice.
Assuntos
Hipertermia Induzida , Humanos , Hipertermia Induzida/métodos , Terapia Combinada , Europa (Continente)RESUMO
BACKGROUND: Transurethral resection of bladder tumor (TUR-BT) followed by chemoradiation (CRT) is a valid treatment option for patients with muscle-invasive bladder cancer (MIBC). This study aimed to investigate the efficacy of a tetramodal approach with additional regional hyperthermia (RHT). METHODS: Patients with stages T2-4 MIBC were recruited at two institutions. Treatment consisted of TUR-BT followed by radiotherapy at doses of 57-58.2 Gy with concurrent weekly platinum-based chemotherapy and weekly deep RHT (41-43 °C, 60 min) within two hours of radiotherapy. The primary endpoint was a complete response six weeks after the end of treatment. Further endpoints were cystectomy-free rate, progression-free survival (PFS), local recurrence-free survival (LRFS), overall survival (OS) and toxicity. Quality of life (QoL) was assessed at follow-up using the EORTC-QLQ-C30 and QLQ-BM30 questionnaires. Due to slow accrual, an interim analysis was performed after the first stage of the two-stage design. RESULTS: Altogether 27 patients were included in the first stage, of these 21 patients with a median age of 73 years were assessable. The complete response rate of evaluable patients six weeks after therapy was 93%. The 2-year cystectomy-free rate, PFS, LRFS and OS rates were 95%, 76%, 81% and 86%, respectively. Tetramodal treatment was well tolerated with acute and late G3-4 toxicities of 10% and 13%, respectively, and a tendency to improve symptom-related quality of life (QoL) one year after therapy. CONCLUSION: Tetramodal therapy of T2-T4 MIBC is promising with excellent local response, moderate toxicity and good QoL. This study deserves continuation into the second stage.
Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária , Idoso , Terapia Combinada , Humanos , Músculos , Qualidade de Vida , Neoplasias da Bexiga Urinária/radioterapia , Neoplasias da Bexiga Urinária/cirurgiaRESUMO
The introduction of EGFR-tyrosine kinase inhibitors (TKIs) has revolutionized the treatment and prognosis of non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) mutations. However, these patients display disease progression driven by the onset of acquired mechanisms of drug resistance that limit the efficacy of EGFR-TKI to no longer than one year. Moreover, a small fraction of EGFR-mutated NSCLC patients does not benefit from this targeted treatment due to primary (i.e. intrinsic) mechanisms of resistance that preexist prior to TKI drug treatment. Research efforts are focusing on deciphering the distinct molecular mechanisms underlying drug resistance, which should prompt the development of novel antitumor agents that surmount such chemoresistance modalities. The capability of microRNAs (miRNAs) to regulate the expression of many oncogenic pathways and their central role in lung cancer progression, provided new directions for research on prognostic biomarkers, as well as innovative tools for predicting patients' response to systemic therapies. Recent evidence suggests that modulation of key miRNAs may also reverse oncogenic signaling pathways, and potentiate the cytotoxic effect of anti-cancer therapies. In this review, we focus on the putative emerging role of miRNAs in modulating drug resistance to EGFR-TKI treatment in EGFR-mutated NSCLC. Moreover, we discuss the current implications of miRNAs analyses in the clinical setting, using both tissue and liquid biopsies, as well as the future potential use of miRNA-based therapies in overcoming resistance to targeted agents like TKIs.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação/genética , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Non-temperature-induced effects of radiofrequency electromagnetic fields (RF) have been controversial for decades. Here, we established measurement techniques to prove their existence by investigating energy deposition in tumor cells under RF exposure and upon adding amplitude modulation (AM) (AMRF). Using a preclinical device LabEHY-200 with a novel in vitro applicator, we analyzed the power deposition and system parameters for five human colorectal cancer cell lines and measured the apoptosis rates in vitro and tumor growth inhibition in vivo in comparison to water bath heating. We showed enhanced anticancer effects of RF and AMRF in vitro and in vivo and verified the non-temperature-induced origin of the effects. Furthermore, apoptotic enhancement by AM was correlated with cell membrane stiffness. Our findings not only provide a strategy to significantly enhance non-temperature-induced anticancer cell effects in vitro and in vivo but also provide a perspective for a potentially more effective tumor therapy.
RESUMO
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is resistant to single-agent immunotherapies. To understand the mechanisms leading to the poor response to this treatment, a better understanding of the PDAC immune landscape is required. The present work aims to study the immune profile in PDAC in relationship to spatial heterogeneity of the tissue microenvironment (TME) in intact tissues. METHODS: Serial section and multiplex in situ analysis were performed in 42 PDAC samples to assess gene and protein expression at single-cell resolution in the: (a) tumor center (TC), (b) invasive front (IF), (c) normal parenchyma adjacent to the tumor, and (d) tumor positive and negative draining lymph nodes (LNs). RESULTS: We observed: (a) enrichment of T cell subpopulations with exhausted and senescent phenotype in the TC, IF and tumor positive LNs; (b) a dominant type 2 immune response in the TME, which is more pronounced in the TC; (c) an emerging role of CD47-SIRPα axis; and (d) a similar immune cell topography independently of the neoadjuvant chemotherapy. CONCLUSION: This study reveals the existence of dysfunctional T lymphocytes with specific spatial distribution, thus opening a new dimension both conceptually and mechanistically in tumor-stroma interaction in PDAC with potential impact on the efficacy of immune-regulatory therapeutic modalities.