Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Glia ; 72(2): 433-451, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37870193

RESUMO

Mitochondria support the energetic demands of the cells. Autophagic turnover of mitochondria serves as a critical pathway for mitochondrial homeostasis. It is unclear how bioenergetics and autophagy are functionally connected. Here, we identify an endolysosomal membrane protein that facilitates autophagy to regulate ATP production in glia. We determined that Drosophila tweety (tty) is highly expressed in glia and localized to endolysosomes. Diminished fusion between autophagosomes and endolysosomes in tty-deficient glia was rescued by expressing the human Tweety Homolog 1 (TTYH1). Loss of tty in glia attenuated mitochondrial turnover, elevated mitochondrial oxidative stress, and impaired locomotor functions. The cellular and organismal defects were partially reversed by antioxidant treatment. We performed live-cell imaging of genetically encoded metabolite sensors to determine the impact of tty and autophagy deficiencies on glial bioenergetics. We found that tty-deficient glia exhibited reduced mitochondrial pyruvate consumption accompanied by a shift toward glycolysis for ATP production. Likewise, genetic inhibition of autophagy in glia resulted in a similar glycolytic shift in bioenergetics. Furthermore, the survival of mutant flies became more sensitive to starvation, underlining the significance of tty in the crosstalk between autophagy and bioenergetics. Together, our findings uncover the role for tty in mitochondrial homeostasis via facilitating autophagy, which determines bioenergetic balance in glia.


Assuntos
Autofagia , Drosophila , Metabolismo Energético , Mitocôndrias , Animais , Humanos , Trifosfato de Adenosina/metabolismo , Autofagia/genética , Drosophila/genética , Drosophila/metabolismo , Metabolismo Energético/genética , Homeostase , Mitocôndrias/metabolismo , Neuroglia/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33859040

RESUMO

Mitochondrial ATP production is a well-known regulator of neuronal excitability. The reciprocal influence of plasma-membrane potential on ATP production, however, remains poorly understood. Here, we describe a mechanism by which depolarized neurons elevate the somatic ATP/ADP ratio in Drosophila glutamatergic neurons. We show that depolarization increased phospholipase-Cß (PLC-ß) activity by promoting the association of the enzyme with its phosphoinositide substrate. Augmented PLC-ß activity led to greater release of endoplasmic reticulum Ca2+ via the inositol trisphosphate receptor (IP3R), increased mitochondrial Ca2+ uptake, and promoted ATP synthesis. Perturbations that decoupled membrane potential from this mode of ATP synthesis led to untrammeled PLC-ß-IP3R activation and a dramatic shortening of Drosophila lifespan. Upon investigating the underlying mechanisms, we found that increased sequestration of Ca2+ into endolysosomes was an intermediary in the regulation of lifespan by IP3Rs. Manipulations that either lowered PLC-ß/IP3R abundance or attenuated endolysosomal Ca2+ overload restored animal longevity. Collectively, our findings demonstrate that depolarization-dependent regulation of PLC-ß-IP3R signaling is required for modulation of the ATP/ADP ratio in healthy glutamatergic neurons, whereas hyperactivation of this axis in chronically depolarized glutamatergic neurons shortens animal lifespan by promoting endolysosomal Ca2+ overload.


Assuntos
Sinalização do Cálcio/fisiologia , Longevidade/fisiologia , Neurônios/metabolismo , Animais , Cálcio/metabolismo , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Ácido Glutâmico/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Potenciais da Membrana , Mitocôndrias/metabolismo , Neurônios/fisiologia
3.
J Neurosci ; 42(42): 8019-8037, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261266

RESUMO

Mutations in the gene encoding vesicle-associated membrane protein B (VAPB) cause a familial form of amyotrophic lateral sclerosis (ALS). Expression of an ALS-related variant of vapb (vapbP58S ) in Drosophila motor neurons results in morphologic changes at the larval neuromuscular junction (NMJ) characterized by the appearance of fewer, but larger, presynaptic boutons. Although diminished microtubule stability is known to underlie these morphologic changes, a mechanism for the loss of presynaptic microtubules has been lacking. By studying flies of both sexes, we demonstrate the suppression of vapbP58S -induced changes in NMJ morphology by either a loss of endoplasmic reticulum (ER) Ca2+ release channels or the inhibition Ca2+/calmodulin (CaM)-activated kinase II (CaMKII). These data suggest that decreased stability of presynaptic microtubules at vapbP58S NMJs results from hyperactivation of CaMKII because of elevated cytosolic [Ca2+]. We attribute the Ca2+ dyshomeostasis to delayed extrusion of cytosolic Ca2+ Suggesting that this defect in Ca2+ extrusion arose from an insufficient response to the bioenergetic demand of neural activity, depolarization-induced mitochondrial ATP production was diminished in vapbP58S neurons. These findings point to bioenergetic dysfunction as a potential cause for the synaptic defects in vapbP58S -expressing motor neurons.SIGNIFICANCE STATEMENT Whether the synchrony between the rates of ATP production and demand is lost in degenerating neurons remains poorly understood. We report that expression of a gene equivalent to an amyotrophic lateral sclerosis (ALS)-causing variant of vesicle-associated membrane protein B (VAPB) in fly neurons decouples mitochondrial ATP production from neuronal activity. Consequently, levels of ATP in mutant neurons are unable to keep up with the bioenergetic burden of neuronal activity. Reduced rate of Ca2+ extrusion, which could result from insufficient energy to power Ca2+ ATPases, results in the accumulation of residual Ca2+ in mutant neurons and leads to alterations in synaptic vesicle (SV) release and synapse development. These findings suggest that synaptic defects in a model of ALS arise from the loss of activity-induced ATP production.


Assuntos
Esclerose Lateral Amiotrófica , Masculino , Animais , Feminino , Esclerose Lateral Amiotrófica/metabolismo , Drosophila/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Neurônios Motores/metabolismo , Proteínas R-SNARE/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Cell ; 135(5): 838-51, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041749

RESUMO

Disruption of the Transient Receptor Potential (TRP) mucolipin 1 (TRPML1) channel results in the neurodegenerative disorder mucolipidosis type IV (MLIV), a lysosomal storage disease with severe motor impairments. The mechanisms underlying MLIV are poorly understood and there is no treatment. Here, we report a Drosophila MLIV model, which recapitulates the key disease features, including abnormal intracellular accumulation of macromolecules, motor defects, and neurodegeneration. The basis for the buildup of macromolecules was defective autophagy, which resulted in oxidative stress and impaired synaptic transmission. Late-apoptotic cells accumulated in trpml mutant brains, suggesting diminished cell clearance. The accumulation of late-apoptotic cells and motor deficits were suppressed by expression of trpml(+) in neurons, glia, or hematopoietic cells. We conclude that the neurodegeneration and motor defects result primarily from decreased clearance of apoptotic cells. Since hematopoietic cells in humans are involved in clearance of apoptotic cells, our results raise the possibility that bone marrow transplantation may limit the progression of MLIV.


Assuntos
Apoptose , Modelos Animais de Doenças , Drosophila/metabolismo , Mucolipidoses/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(41): 25840-25850, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989137

RESUMO

Declining insect population sizes are provoking grave concern around the world as insects play essential roles in food production and ecosystems. Environmental contamination by intense insecticide usage is consistently proposed as a significant contributor, among other threats. Many studies have demonstrated impacts of low doses of insecticides on insect behavior, but have not elucidated links to insecticidal activity at the molecular and cellular levels. Here, the histological, physiological, and behavioral impacts of imidacloprid are investigated in Drosophila melanogaster, an experimental organism exposed to insecticides in the field. We show that oxidative stress is a key factor in the mode of action of this insecticide at low doses. Imidacloprid produces an enduring flux of Ca2+ into neurons and a rapid increase in levels of reactive oxygen species (ROS) in the larval brain. It affects mitochondrial function, energy levels, the lipid environment, and transcriptomic profiles. Use of RNAi to induce ROS production in the brain recapitulates insecticide-induced phenotypes in the metabolic tissues, indicating that a signal from neurons is responsible. Chronic low level exposures in adults lead to mitochondrial dysfunction, severe damage to glial cells, and impaired vision. The potent antioxidant, N-acetylcysteine amide (NACA), reduces the severity of a number of the imidacloprid-induced phenotypes, indicating a causal role for oxidative stress. Given that other insecticides are known to generate oxidative stress, this research has wider implications. The systemic impairment of several key biological functions, including vision, reported here would reduce the resilience of insects facing other environmental challenges.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Neurônios/efeitos dos fármacos , Nitrocompostos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cálcio/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Imidazóis/análise , Imidazóis/toxicidade , Inseticidas/análise , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neonicotinoides/análise , Neurônios/metabolismo , Nitrocompostos/análise , Estresse Oxidativo/efeitos dos fármacos
6.
Hum Mol Genet ; 28(16): 2799-2810, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31107959

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease that culminates in paralysis and death. Here, we present our analyses of publicly available multiOMIC data sets generated using motor neurons from ALS patients and control cohorts. Functional annotation of differentially expressed genes in induced pluripotent stem cell (iPSC)-derived motor neurons generated from patients with mutations in C9ORF72 (C9-ALS) suggests elevated expression of genes that pertain to extracellular matrix (ECM) and cell adhesion, inflammation and TGFß targets. On the other end of the continuum, we detected diminished expression of genes repressed by quiescence-promoting E2F4/DREAM complex. Proteins whose abundance was significantly altered in C9-ALS neurons faithfully recapitulated the transcriptional aberrations. Importantly, patterns of gene expression in spinal motor neurons dissected from C9-ALS or sporadic ALS patients were highly concordant with each other and with the C9-ALS iPSC neurons. In contrast, motor neurons from patients with mutations in SOD1 exhibited dramatically different signatures. Elevated expression of gene sets such as ECM and cell adhesion genes occurs in C9 and sporadic ALS but not SOD1-ALS. These analyses indicate that despite the similarities in outward manifestations, transcriptional and proteomic signatures in ALS motor neurons can vary significantly depending on the identity of the causal mutations.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Neurônios Motores/metabolismo , Mutação , Superóxido Dismutase-1/genética , Transcrição Gênica , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Neurônios Motores/citologia , Proteômica/métodos
7.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30787043

RESUMO

By serving as intermediaries between cellular metabolism and the bioenergetic demands of proliferation, endolysosomes allow cancer cells to thrive under normally detrimental conditions. Here, we show that an endolysosomal TRP channel, TRPML1, is necessary for the proliferation of cancer cells that bear activating mutations in HRAS Expression of MCOLN1, which encodes TRPML1, is significantly elevated in HRAS-positive tumors and inversely correlated with patient prognosis. Concordantly, MCOLN1 knockdown or TRPML1 inhibition selectively reduces the proliferation of cancer cells that express oncogenic, but not wild-type, HRAS Mechanistically, TRPML1 maintains oncogenic HRAS in signaling-competent nanoclusters at the plasma membrane by mediating cholesterol de-esterification and transport. TRPML1 inhibition disrupts the distribution and levels of cholesterol and thereby attenuates HRAS nanoclustering and plasma membrane abundance, ERK phosphorylation, and cell proliferation. These findings reveal a selective vulnerability of HRAS-driven cancers to TRPML1 inhibition, which may be leveraged as an actionable therapeutic strategy.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Proliferação de Células , Drosophila , Endossomos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Lisossomos/metabolismo , Modelos Biológicos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Fosforilação , Prognóstico , Transdução de Sinais , Transcriptoma , Canais de Potencial de Receptor Transitório/metabolismo
8.
Am J Med Genet A ; 182(3): 597-606, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31825160

RESUMO

The RASopathies are a group of genetic disorders that result from germline pathogenic variants affecting RAS-mitogen activated protein kinase (MAPK) pathway genes. RASopathies share RAS/MAPK pathway dysregulation and share phenotypic manifestations affecting numerous organ systems, causing lifelong and at times life-limiting medical complications. RASopathies may benefit from precision medicine approaches. For this reason, the Sixth International RASopathies Symposium focused on exploring precision medicine. This meeting brought together basic science researchers, clinicians, clinician scientists, patient advocates, and representatives from pharmaceutical companies and the National Institutes of Health. Novel RASopathy genes, variants, and animal models were discussed in the context of medication trials and drug development. Attempts to define and measure meaningful endpoints for treatment trials were discussed, as was drug availability to patients after trial completion.


Assuntos
Doenças Genéticas Inatas/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas ras/genética , Doenças Genéticas Inatas/patologia , Mutação em Linhagem Germinativa/genética , Humanos , Transdução de Sinais/genética
9.
PLoS Biol ; 13(3): e1002103, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25811491

RESUMO

Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.


Assuntos
Canais de Cálcio Tipo N/genética , Canais de Cálcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo , Fagossomos/metabolismo , Animais , Autofagia/genética , Cálcio/metabolismo , Canais de Cálcio/deficiência , Canais de Cálcio Tipo N/deficiência , Cerebelo/metabolismo , Cerebelo/ultraestrutura , Proteínas de Drosophila/deficiência , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Endossomos/ultraestrutura , Feminino , Regulação da Expressão Gênica , Homeostase/genética , Lisossomos/ultraestrutura , Masculino , Fusão de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/ultraestrutura , Fagossomos/ultraestrutura , Cultura Primária de Células , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura
11.
PLoS Biol ; 12(4): e1001847, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24781186

RESUMO

Rhodopsin mistrafficking can cause photoreceptor (PR) degeneration. Upon light exposure, activated rhodopsin 1 (Rh1) in Drosophila PRs is internalized via endocytosis and degraded in lysosomes. Whether internalized Rh1 can be recycled is unknown. Here, we show that the retromer complex is expressed in PRs where it is required for recycling endocytosed Rh1 upon light stimulation. In the absence of subunits of the retromer, Rh1 is processed in the endolysosomal pathway, leading to a dramatic increase in late endosomes, lysosomes, and light-dependent PR degeneration. Reducing Rh1 endocytosis or Rh1 levels in retromer mutants alleviates PR degeneration. In addition, increasing retromer abundance suppresses degenerative phenotypes of mutations that affect the endolysosomal system. Finally, expressing human Vps26 suppresses PR degeneration in Vps26 mutant PRs. We propose that the retromer plays a conserved role in recycling rhodopsins to maintain PR function and integrity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsina/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Proteínas de Drosophila/genética , Endocitose/fisiologia , Luz , Lisossomos/metabolismo , Mutação , Células Fotorreceptoras de Invertebrados/citologia , Transporte Proteico , Degeneração Retiniana/fisiopatologia , Proteínas de Transporte Vesicular/metabolismo
12.
J Biol Chem ; 289(7): 4262-72, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24375408

RESUMO

Transient Receptor Potential mucolipin (TRPML) channels are implicated in endolysosomal trafficking, lysosomal Ca(2+) and Fe(2+) release, lysosomal biogenesis, and autophagy. Mutations in human TRPML1 cause the lysosome storage disease, mucolipidosis type IV (MLIV). Unlike vertebrates, which express three TRPML genes, TRPML1-3, the Drosophila genome encodes a single trpml gene. Although the trpml-deficient flies exhibit cellular defects similar to those in mammalian TRPML1 mutants, the biophysical properties of Drosophila TRPML channel remained uncharacterized. Here, we show that transgenic expression of human TRPML1 in the neurons of Drosophila trpml mutants partially suppressed the pupal lethality phenotype. When expressed in HEK293 cells, Drosophila TRPML was localized in both endolysosomes and plasma membrane and was activated by phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) applied to the cytoplasmic side in whole lysosomes and inside-out patches excised from plasma membrane. The PI(3,5)P2-evoked currents were blocked by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), but not other phosphoinositides. Using TRPML A487P, which mimics the varitint-waddler (Va) mutant of mouse TRPML3 with constitutive whole-cell currents, we show that TRPML is biphasically regulated by extracytosolic pH, with an optimal pH about 0.6 pH unit higher than that of human TRPML1. In addition to monovalent cations, TRPML exhibits high permeability to Ca(2+), Mn(2+), and Fe(2+), but not Fe(3+). The TRPML currents were inhibited by trivalent cations Fe(3+), La(3+), and Gd(3+). These features resemble more closely to mammalian TRPML1 than TRPML2 and TRPML3, but with some obvious differences. Together, our data support the use of Drosophila for assessing functional significance of TRPML1 in cell physiology.


Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Metais/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Cátions/metabolismo , Membrana Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Endossomos/genética , Células HEK293 , Humanos , Transporte de Íons/fisiologia , Lisossomos/genética , Mutação de Sentido Incorreto , Fosfatos de Fosfatidilinositol/genética , Canais de Potencial de Receptor Transitório/genética
13.
Handb Exp Pharmacol ; 223: 937-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24961975

RESUMO

The Transient Receptor Potential (TRP) channel family is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling. TRPs allow animals to detect chemicals, mechanical force, light, and changes in temperature. Consequently, these channels control a plethora of animal behaviors. Moreover, their functions are not limited to the classical senses, as they are cellular sensors, which are critical for ionic homeostasis and metabolism. Two genetically tractable invertebrate model organisms, Caenorhabditis elegans and Drosophila melanogaster, have led the way in revealing a wide array of sensory roles and behaviors that depend on TRP channels. Two overriding themes have emerged from these studies. First, TRPs are multitasking proteins, and second, many functions and modes of activation of these channels are evolutionarily conserved, including some that were formerly thought to be unique to invertebrates, such as phototransduction. Thus, worms and flies offer the potential to decipher roles for mammalian TRPs, which would otherwise not be suspected.


Assuntos
Caenorhabditis elegans/fisiologia , Drosophila melanogaster/fisiologia , Evolução Molecular , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Células Quimiorreceptoras/fisiologia , Mecanotransdução Celular/fisiologia , Nociceptividade/fisiologia , Células Fotorreceptoras/fisiologia
14.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464270

RESUMO

Lactate, an intermediary between glycolysis and mitochondrial oxidative phosphorylation, reflects the metabolic state of neurons. Here, we utilized a genetically-encoded lactate FRET biosensor to uncover subpopulations of distinct metabolic states among Drosophila glutamatergic neurons. Neurons within specific subpopulations exhibited correlated lactate flux patterns that stemmed from inherent cellular properties rather than neuronal interconnectivity. Further, individual neurons exhibited consistent patterns of lactate flux over time such that stimulus-evoked changes in lactate were correlated with pre-treatment fluctuations. Leveraging these temporal autocorrelations, deep-learning models accurately predicted post-stimulus responses from pre-stimulus fluctuations. These findings point to the existence of distinct neuronal subpopulations, each characterized by unique lactate dynamics, and raise the possibility that neurons with correlated metabolic activities might synchronize across different neural circuits. Such synchronization, rooted in neuronal metabolic states, could influence information processing in the brain.

15.
JMIR Form Res ; 7: e53293, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37991899

RESUMO

BACKGROUND: Depression and anxiety are highly prevalent conditions in the United States. Despite the availability of suitable therapeutic options, limited access to high-quality psychiatrists represents a major barrier to treatment. Although telepsychiatry has the potential to improve access to psychiatrists, treatment efficacy in the telepsychiatry model remains unclear. OBJECTIVE: Our primary objective was to determine whether there was a clinically meaningful change in 1 of 2 validated outcome measures of depression and anxiety-the Patient Health Questionnaire-8 (PHQ-8) or the Generalized Anxiety Disorder-7 (GAD-7)-after receiving at least 8 weeks of treatment in an outpatient telepsychiatry setting. METHODS: We included treatment-seeking patients enrolled in a large outpatient telepsychiatry service that accepts commercial insurance. All analyzed patients completed the GAD-7 and PHQ-8 prior to their first appointment and at least once after 8 weeks of treatment. Treatments included comprehensive diagnostic evaluation, supportive psychotherapy, and medication management. RESULTS: In total, 1826 treatment-seeking patients were evaluated for clinically meaningful changes in GAD-7 and PHQ-8 scores during treatment. Mean treatment duration was 103 (SD 34) days. At baseline, 58.8% (1074/1826) and 60.1% (1097/1826) of patients exhibited at least moderate anxiety and depression, respectively. In response to treatment, mean change for GAD-7 was -6.71 (95% CI -7.03 to -6.40) and for PHQ-8 was -6.85 (95% CI -7.18 to -6.52). Patients with at least moderate symptoms at baseline showed a 45.7% reduction in GAD-7 scores and a 43.1% reduction in PHQ-8 scores. Effect sizes for GAD-7 and PHQ-8, as measured by Cohen d for paired samples, were d=1.30 (P<.001) and d=1.23 (P<.001), respectively. Changes in GAD-7 and PHQ-8 scores correlated with the type of insurance held by the patients. Greatest reductions in scores were observed among patients with commercial insurance (45% and 43.9% reductions in GAD-7 and PHQ-8 scores, respectively). Although patients with Medicare did exhibit statistically significant reductions in GAD-7 and PHQ-8 scores from baseline (P<.001), these improvements were attenuated compared to those in patients with commercial insurance (29.2% and 27.6% reduction in GAD-7 and PHQ-8 scores, respectively). Pairwise comparison tests revealed significant differences in treatment responses in patients with Medicare versus commercial insurance (P<.001). Responses were independent of patient geographic classification (urban vs rural; P=.48 for GAD-7 and P=.07 for PHQ-8). The finding that treatment efficacy was comparable among rural and urban patients indicated that telepsychiatry is a promising approach to overcome treatment disparities that stem from geographical constraints. CONCLUSIONS: In this large retrospective data analysis of treatment-seeking patients using a telepsychiatry platform, we found robust and clinically significant improvement in depression and anxiety symptoms during treatment. The results provide further evidence that telepsychiatry is highly effective and has the potential to improve access to psychiatric care.

16.
J Physiol ; 595(3): 615-616, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145014
17.
Cells ; 11(7)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406743

RESUMO

Despite significant advances in our understanding of the mechanisms that underlie age-related physiological decline, our ability to translate these insights into actionable strategies to extend human healthspan has been limited. One of the major reasons for the existence of this barrier is that with a few important exceptions, many of the proteins that mediate aging have proven to be undruggable. The argument put forth here is that the amenability of ion channels and transporters to pharmacological manipulation could be leveraged to develop novel therapeutic strategies to combat aging. This review delves into the established roles for ion channels and transporters in the regulation of aging and longevity via their influence on membrane excitability, Ca2+ homeostasis, mitochondrial and endolysosomal function, and the transduction of sensory stimuli. The goal is to provide the reader with an understanding of emergent themes, and prompt further investigation into how the activities of ion channels and transporters sculpt the trajectories of cellular and organismal aging.


Assuntos
Envelhecimento , Longevidade , Envelhecimento/metabolismo , Homeostase , Humanos , Canais Iônicos/metabolismo , Lisossomos/metabolismo
18.
Cells ; 12(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36611873

RESUMO

Glutamine is one of the most abundant amino acids in the cell. In mitochondria, glutaminases 1 and 2 (GLS1/2) hydrolyze glutamine to glutamate, which serves as the precursor of multiple metabolites. Here, we show that ammonium generated during GLS1/2-mediated glutaminolysis regulates lysosomal pH and in turn lysosomal degradation. In primary human skin fibroblasts BJ cells and mouse embryonic fibroblasts, deprivation of total amino acids for 1 h increased lysosomal degradation capacity as shown by the increased turnover of lipidated microtubule-associated proteins 1A/1B light chain 3B (LC3-II), several autophagic receptors, and endocytosed DQ-BSA. Removal of glutamine but not any other amino acids from the culture medium enhanced lysosomal degradation similarly as total amino acid starvation. The presence of glutamine in regular culture media increased lysosomal pH by >0.5 pH unit and the removal of glutamine caused lysosomal acidification. GLS1/2 knockdown, GLS1 antagonist, or ammonium scavengers reduced lysosomal pH in the presence of glutamine. The addition of glutamine or NH4Cl prevented the increase in lysosomal degradation and curtailed the extension of mTORC1 function during the early time period of amino acid starvation. Our findings suggest that glutamine tunes lysosomal pH by producing ammonium, which regulates lysosomal degradation to meet the demands of cellular activities. During the early stage of amino acid starvation, the glutamine-dependent mechanism allows more efficient use of internal reserves and endocytosed proteins to extend mTORC1 activation such that the normal anabolism is not easily interrupted by a brief disruption of the amino acid supply.


Assuntos
Compostos de Amônio , Glutamina , Animais , Camundongos , Humanos , Glutamina/metabolismo , Compostos de Amônio/farmacologia , Compostos de Amônio/metabolismo , Fibroblastos/metabolismo , Aminoácidos/metabolismo , Ácido Glutâmico/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lisossomos/metabolismo , Concentração de Íons de Hidrogênio
19.
Elife ; 112022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35191376

RESUMO

Large-scale insecticide application is a primary weapon in the control of insect pests in agriculture. However, a growing body of evidence indicates that it is contributing to the global decline in population sizes of many beneficial insect species. Spinosad emerged as an organic alternative to synthetic insecticides and is considered less harmful to beneficial insects, yet its mode of action remains unclear. Using Drosophila, we show that low doses of spinosad antagonize its neuronal target, the nicotinic acetylcholine receptor subunit alpha 6 (nAChRα6), reducing the cholinergic response. We show that the nAChRα6 receptors are transported to lysosomes that become enlarged and increase in number upon low doses of spinosad treatment. Lysosomal dysfunction is associated with mitochondrial stress and elevated levels of reactive oxygen species (ROS) in the central nervous system where nAChRα6 is broadly expressed. ROS disturb lipid storage in metabolic tissues in an nAChRα6-dependent manner. Spinosad toxicity is ameliorated with the antioxidant N-acetylcysteine amide. Chronic exposure of adult virgin females to low doses of spinosad leads to mitochondrial defects, severe neurodegeneration, and blindness. These deleterious effects of low-dose exposures warrant rigorous investigation of its impacts on beneficial insects.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Macrolídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Relação Dose-Resposta a Droga , Drosophila melanogaster , Combinação de Medicamentos , Inseticidas/administração & dosagem , Inseticidas/farmacologia , Macrolídeos/administração & dosagem
20.
J Neurosci ; 30(34): 11337-45, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20739554

RESUMO

Normal termination of signaling is essential to reset signaling cascades, especially those such as phototransduction that are turned on and off with great rapidity. Genetic approaches in Drosophila led to the identification of several proteins required for termination, including protein kinase C (PKC), NINAC (neither inactivation nor afterpotential C) p174, which consists of fused protein kinase and myosin domains, and a PDZ (postsynaptic density-95/Discs Large/zona occludens-1) scaffold protein, INAD (inactivation no afterpotential D). Here, we describe a mutation affecting a poorly characterized but evolutionarily conserved protein, Retinophilin (Retin), which is expressed primarily in the phototransducing compartment of photoreceptor cells, the rhabdomeres. Retin and NINAC formed a complex and were mutually dependent on each other for expression. Loss of retin resulted in an age-dependent impairment in termination of phototransduction. Mutations that affect termination of the photoresponse typically lead to a reduction in levels of the major rhodopsin (Rh1) to attenuate signaling. Consistent with the slower termination in retin(1), the mutant photoreceptor cells exhibited increased endocytosis of Rh1 and a decline in Rh1 protein. The slower termination in retin(1) was a consequence of a cascade of defects, which began with the reduction in NINAC p174 levels. The diminished p174 concentration caused a decrease in INAD. Because PKC requires interaction with INAD for protein stability, this leads to reduction in PKC levels. The decline in PKC was age dependent and paralleled the onset of the termination phenotype in retin(1) mutant flies. We conclude that the slower termination of the photoresponse in retin(1) resulted from a requirement for the Retin/NINAC complex for stability of INAD and PKC.


Assuntos
Proteínas de Drosophila/fisiologia , Proteínas do Olho/fisiologia , Transdução de Sinal Luminoso/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Miosinas/fisiologia , Proteína Quinase C/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Estabilidade Enzimática/fisiologia , Proteínas do Olho/biossíntese , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Cadeias Pesadas de Miosina/química , Miosinas/química , Estimulação Luminosa/métodos , Proteína Quinase C/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA