Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 11307-11313, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047748

RESUMO

The fusion step in the formation of colloidal quantum dot molecules, constructed from two core/shell quantum dots, dictates the coupling strength and hence their properties and enriched functionalities compared to monomers. Herein, studying the monomer size effect on fusion and coupling, we observe a linear relation of the fusion temperature with the inverse nanocrystal radius. This trend, similar to that in nanocrystal melting, emphasizes the role of the surface energy. The suggested fusion mechanism involves intraparticle ripening where atoms diffuse to the reactive connecting neck region. Moreover, the effect of monomer size and neck filling on the degree of electronic coupling is studied by combined atomistic-pseudopotential calculations and optical measurements, uncovering strong coupling effects in small QD dimers, leading to significant optical changes. Understanding and controlling the fusion and hence coupling effect allows tailoring the optical properties of these nanoscale structures, with potential applications in photonic and quantum technologies.

2.
J Chem Phys ; 157(13): 134502, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209001

RESUMO

The structural, electronic, and optical properties of CdSe/CdS core-shell colloidal quantum dot molecules, a new class of coupled quantum dot dimers, are explored using atomistic approaches. Unlike the case of dimers grown by molecular beam epitaxy, simulated strain profile maps of free-standing colloidal dimers show negligible additional strain resulting from the attachment. The electronic properties of the relaxed dimers are described within a semiempirical pseudopotential model combined with the Bethe-Salpeter equation within the static screening approximation to account for electron-hole correlations. The interplay of strain, hybridization (tunneling splitting), quantum confinement, and electron-hole binding energies on the optical properties is analyzed and discussed. The effects of the dimensions of the neck connecting the two quantum dot building blocks, as well as the shell thickness, are studied.

3.
ACS Appl Mater Interfaces ; 14(1): 647-653, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958193

RESUMO

Hybrid semiconductor-metal nanocrystals manifest efficient photocatalytic activity related to the metal domain promoting charge carrier separation and providing an active catalytic site. The surface properties of such nanoparticles are also of paramount importance in determining their photocatalytic activity. Addressing the combination of surface effects in catalysis on metals, with the electronic properties of hybrid nanoparticles, we examined the effect of coating CdS-Au hybrid nanoparticles with sulfide, an anion that is expected to bind strongly to both domains, on the photocatalytic functionality. Upon sulfide coating, one-electron processes - namely the oxidative production of hydroxyl radicals and the reductive production of superoxide - were increased, whereas the activity for two-electron reduction processes - H2 and hydrogen peroxide generation - was hampered. These findings indicate a double-edged sword effect for sulfide coating that on one side relieves the hole extraction bottleneck from the semiconductor segment and, on the other hand, poisons the metal domain restricting its reductive capacity for the two-electron processes requiring a chemisorption step on the metal surface. The work further demonstrates the importance of surface properties for the photocatalytic action of such hybrid nanoparticle systems.

4.
Nanoscale ; 11(23): 11209-11216, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31157812

RESUMO

Semiconductor nanocrystals have been shown to have unique advantages over traditional organic photoinitiators for polymerization in solution. However, efficient photoinitiation with such nanoparticles in solvent-free and additive-free formulations so far has not been achieved. Herein, the ability to use semiconductor nanocrystals for efficient bulk polymerization as sole initiators is reported, operating under modern UV-blue-LED light sources found in 3D printers and other photocuring applications. Hybrid semiconductor-metal nanorods exhibit superior photoinitiation capability to their pristine semiconductor counterparts, attributed to the enhanced charge separation and oxygen consumption in such systems. Moreover, photoinitiation by semiconductor nanocrystals overcoated by inorganic ligands is reported, thus increasing the scope of possible applications and shedding light on the photoinitiation mechanism; in light of the results, two possible pathways are discussed - ligand-mediated and cation-coordinated oxidation. A demonstration of the unique attributes of the quantum photoinitiators is reported in their use for high-resolution two-photon printing of optically fluorescing microstructures, demonstrating a multi-functionality capability. The bulk polymerization demonstrated here can be advantageous over solvent based methods as it alleviates the need of post-polymerization drying and reduces waste and exposure to toxic solvents, as well as broadens the possible use of quantum photoinitiators for industrial and research uses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA