Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 23(20): 26139-45, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480128

RESUMO

We present an Yb-fiber oscillator with an all-polarization-maintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity, in contrast to dispersion compensation schemes used in previous demonstrations of all-polarization maintaining Yb-fiber oscillators. The performance of the saturable absorber mirror modelocked oscillator, that employs a free space scheme for coupling onto the saturable absorber mirror and output coupling, was investigated for different settings of the intracavity dispersion. When the cavity is operated with close to zero net dispersion, highly stable 0.5-nJ pulses externally compressed to sub-100-fs are generated. These are to our knowledge the shortest pulses generated from an all-polarization-maintaining Yb-fiber oscillator. The spectral phase of the output pulses is well behaved and can be compensated such that wing-free Fourier transform limited pulses can be obtained. Further reduction of the net intracavity third order dispersion will allow generating broader output spectra and consequently shorter pulses, without sacrificing pulse fidelity.

2.
Opt Express ; 22(14): 16759-66, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25090494

RESUMO

We demonstrate a monolithic Yb-fiber chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor. For an output energy of 77 nJ, 220 fs pulses with 92% of the energy contained in the main pulse, can be obtained with minimal nonlinearities in the system. 135 nJ pulses are obtained with 226 fs duration and 82 percent of the energy in the main pulse. Due to the good dispersion match of the stretcher to the hollow core photonic bandgap fiber compressor, the duration of the output pulses is within 10% of the Fourier limited duration.

3.
Opt Express ; 21(14): 16255-62, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938476

RESUMO

Fiber oscillators operating in the normal dispersion regime allow generating high energy output pulses. The best stability of such oscillators is observed when the intracavity dispersion is close to zero. Intracavity dispersion compensation in such oscillators can be achieved using a higher-order mode fiber, which substantially reduces the higher order dispersion compared to all-normal dispersion oscillators or oscillators using intracavity gratings for dispersion compensation. Using this approach, we are able to obtain relatively high energy pulses, with high fidelity. Our modeling based on an analytic approach for oscillators operating in the normal dispersion regime predicts that at intermediate pulse energies an almost flat chirp can be obtained at the oscillator output enabling good pulse compression with a grating compressor close to Fourier limited duration. Here, we present a mode-locked ytterbium-doped fiber oscillator with a higher-order mode fiber operating in the net normal-dispersion regime, delivering 7.2 nJ pulses that can be dechirped down to 62 fs using a simple grating compressor.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Lasers , Processamento de Sinais Assistido por Computador/instrumentação , Itérbio/química , Desenho de Equipamento , Análise de Falha de Equipamento
4.
Opt Lett ; 38(15): 2746-9, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23903130

RESUMO

We have developed the first (to our knowledge) femtosecond Tm-fiber-laser-pumped Ho:YAG room-temperature chirped pulse amplifier system delivering scalable multimillijoule, multikilohertz pulses with a bandwidth exceeding 12 nm and average power of 15 W. The recompressed 530 fs pulses are suitable for broadband white light generation in transparent solids, which makes the developed source ideal for both pumping and seeding optical parametric amplifiers operating in the mid-IR spectral range.

5.
Nature ; 446(7136): 627-32, 2007 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-17410167

RESUMO

Atoms exposed to intense light lose one or more electrons and become ions. In strong fields, the process is predicted to occur via tunnelling through the binding potential that is suppressed by the light field near the peaks of its oscillations. Here we report the real-time observation of this most elementary step in strong-field interactions: light-induced electron tunnelling. The process is found to deplete atomic bound states in sharp steps lasting several hundred attoseconds. This suggests a new technique, attosecond tunnelling, for probing short-lived, transient states of atoms or molecules with high temporal resolution. The utility of attosecond tunnelling is demonstrated by capturing multi-electron excitation (shake-up) and relaxation (cascaded Auger decay) processes with subfemtosecond resolution.

6.
Opt Express ; 20(22): 25121-9, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187278

RESUMO

We propose and investigate experimentally an interferometrically stable, polarization-selective pulse multiplexing scheme for direct laser amplification of picosecond pulses. The basic building block of this scheme is a Sagnac loop which allows for a straightforward scaling of the pulse-multiplexing scheme. Switching the amplifier from single-pulse amplification to burst mode increases extraction efficiency, reduces parasitic non-linearities in the gain medium and allows for higher output energies. Time-frequency analysis of the amplified output pulses demonstrates the viability of this approach.

7.
Opt Lett ; 37(5): 927-9, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22378441

RESUMO

Although femtosecond microjoule Yb-fiber systems are attractive because of a straightforward power scalability, they inherently suffer from a lowered pulse fidelity as a result of complex dispersion and nonlinearity management. Here, we present an integrated Yb-fiber system delivering high-fidelity microjoule pulses compressible down to 160 fs. The system uses a dispersion compensating fiber stretcher that is specially designed to match the dispersion of a 1480 lines/mm grating compressor. Performance analysis suggests the further possibility of scaling the pulse energy to tens of microjoules without pulse quality deterioration using this dispersion management scheme.


Assuntos
Lasers de Estado Sólido , Fenômenos Ópticos , Itérbio/química , Modelos Teóricos
8.
Nature ; 433(7026): 596, 2005 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-15703738

RESUMO

Generating X-rays that have the properties of laser light has been a long-standing goal for experimental science. Here we describe the emission of highly collimated, spatially coherent X-rays, at a wavelength of about 1 nanometre and at photon energies extending to 1.3 kiloelectronvolts, from atoms that have been ionized by a 5-femtosecond laser pulse. This means that a laboratory source of laser-like, kiloelectronvolt X-rays, which will operate on timescales relevant to many chemical, biological and materials problems, is now within reach.

9.
Biomed Opt Express ; 12(1): 288-302, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33659077

RESUMO

We introduce a new approach to reduce uncorrelated background signals from fluorescence imaging data, using real-time subtraction of background light. This approach takes advantage of the short fluorescence lifetime of most popular fluorescent activity reporters, and the low duty-cycle of ultrafast lasers. By synchronizing excitation and recording, laser-induced multiphoton fluorescence can be discriminated from background light levels with each laser pulse. We demonstrate the ability of our method to - in real-time - remove image artifacts that in a conventional imaging setup lead to clipping of the signal. In other words, our method enables imaging under conditions that in a conventional setup would yield corrupted data from which no accurate information can be extracted. This is advantageous in experimental setups requiring additional light sources for applications such as optogenetic stimulation.

10.
Opt Lett ; 34(18): 2799-801, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19756109

RESUMO

In an effort to develop a robust and efficient front end for a chirped-pulse parametric amplification chain, we demonstrate a broadband difference-frequency converter driven by a monolithic femtosecond Yb-doped-fiber amplifier and emitting carrier-envelope-offset-free pulses with the energy of tens of nanojoules tunable in the wavelength range from 1200 nm to beyond 2 mum. Next to providing these seed pulses, the system enables direct optical synchronization of Nd- and Yb-doped pump lasers for subsequent parametric amplification.

11.
Opt Lett ; 33(13): 1407-9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18594647

RESUMO

Self-channeling of few-cycle laser pulses in helium at high pressure generates coherent light supercontinua spanning the range of 270-1000 nm, with the highest efficiency demonstrated to date. Our results open the door to the synthesis of powerful light waveforms shaped within the carrier field oscillation cycle and hold promise for the generation of pulses at the single-cycle limit.


Assuntos
Hélio/química , Lasers , Iluminação/instrumentação , Iluminação/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
12.
Science ; 312(5771): 246-8, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16614216

RESUMO

We demonstrated how the subcycle evolution of the electric field of light can be used to control the motion of bound electrons. Results are presented for the dissociative ionization of deuterium molecules (D2 --> D+ + D), where asymmetric ejection of the ionic fragment reveals that light-driven intramolecular electronic motion before dissociation localizes the electron on one of the two D+ ions in a controlled way. The results extend subfemtosecond electron control to molecules and provide evidence of its usefulness in controlling reaction dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA