Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 460: 116377, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642108

RESUMO

Utilizing the atto-zeptomole sensitivity of UPLC-accelerator mass spectrometry (UPLC-AMS), we previously demonstrated significant first-pass metabolism following escalating (25-250 ng) oral micro-dosing in humans of [14C]-benzo[a]pyrene ([14C]-BaP). The present study examines the potential for supplementation with Brussels sprouts (BS) or 3,3'-diindolylmethane (DIM) to alter plasma levels of [14C]-BaP and metabolites over a 48-h period following micro-dosing with 50 ng (5.4 nCi) [14C]-BaP. Volunteers were dosed with [14C]-BaP following fourteen days on a cruciferous vegetable restricted diet, or the same diet supplemented for seven days with 50 g of BS or 300 mg of BR-DIM® prior to dosing. BS or DIM reduced total [14C] recovered from plasma by 56-67% relative to non-intervention. Dietary supplementation with DIM markedly increased Tmax and reduced Cmax for [14C]-BaP indicative of slower absorption. Both dietary treatments significantly reduced Cmax values of four downstream BaP metabolites, consistent with delaying BaP absorption. Dietary treatments also appeared to reduce the T1/2 and the plasma AUC(0,∞) for Unknown Metabolite C, indicating some effect in accelerating clearance of this metabolite. Toxicokinetic constants for other metabolites followed the pattern for [14C]-BaP (metabolite profiles remained relatively consistent) and non-compartmental analysis did not indicate other significant alterations. Significant amounts of metabolites in plasma were at the bay region of [14C]-BaP irrespective of treatment. Although the number of subjects and large interindividual variation are limitations of this study, it represents the first human trial showing dietary intervention altering toxicokinetics of a defined dose of a known human carcinogen.


Assuntos
Benzo(a)pireno , Carcinógenos , Humanos , Suplementos Nutricionais , Toxicocinética
2.
Chem Biol Interact ; 382: 110608, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37369263

RESUMO

Current risk assessments for environmental carcinogens rely on animal studies utilizing doses orders of magnitude higher than actual human exposures. Epidemiological studies of people with high exposures (e.g., occupational) are of value, but rely on uncertain exposure data. In addition, exposures are typically not to a single chemical but to mixtures, such as polycyclic aromatic hydrocarbons (PAHs). The extremely high sensitivity of accelerator mass spectrometry (AMS) allows for dosing humans with known carcinogens with de minimus risk. In this study UPLC-AMS was used to assess the toxicokinetics of [14C]-benzo[a]pyrene ([14C]-BaP) when dosed alone or in a binary mixture with phenanthrene (Phe). Plasma was collected for 48 h following a dose of [14C]-BaP (50 ng, 5.4 nCi) or the same dose of [14C]-BaP plus Phe (1250 ng). Following the binary mixture, Cmax of [14C]-BaP significantly decreased (4.4-fold) whereas the volume of distribution (Vd) increased (2-fold). Further, the toxicokinetics of twelve [14C]-BaP metabolites provided evidence of little change in the metabolite profile of [14C]-BaP and the pattern was overall reduction consistent with reduced absorption (decrease in Cmax). Although Phe was shown to be a competitive inhibitor of the major hepatic cytochrome P-450 (CYP) responsible for metabolism of [14C]-BaP, CYP1A2, the high inhibition constant (Ki) and lack of any increase in unmetabolized [14C]-BaP in plasma makes this mechanism unlikely to be responsible. Rather, co-administration of Phe reduces the absorption of [14C]-BaP through a mechanism yet to be determined. This is the first study to provide evidence that, at actual environmental levels of exposure, the toxicokinetics of [14C]-BaP in humans is markedly altered by the presence of a second PAH, Phe, a common component of environmental PAH mixtures.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Benzo(a)pireno/toxicidade , Toxicocinética , Fenantrenos/toxicidade , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA