RESUMO
Patients with end-stage heart disease who undergo a heart transplant frequently have simultaneous kidney insufficiency, therefore simultaneous heart and kidney transplantation is an option and it is necessary to understand its characteristics and long-term variables. The recipient characteristics and operative and long-term variables were assessed in a meta-analysis. A total of 781 studies were screened, and 33 were thoroughly reviewed. 15 retrospective cohort studies and 376 patients were included. The recipient's mean age was 51.1 years (95% CI 48.52-53.67) and 84% (95% CI 80-87) were male. 71% (95% CI 59-83) of the recipients were dialysis dependent. The most common indication was ischemic cardiomyopathy [47% (95% CI 41-53)] and cardiorenal syndrome [22% (95% CI 9-35)]. Also, 33% (95% CI 20-46) of the patients presented with delayed graft function. During the mean follow-up period of 67.49 months (95% CI 45.64-89.33), simultaneous rejection episodes of both organ allografts were described in 5 cases only. Overall survival was 95% (95% CI 88-100) at 30 days, 81% (95% CI 76-86) at 1 year, 79% (95% CI 71-87) at 3, and 71% (95% CI 59-83) at 5 years. Simultaneous heart and kidney transplantation is an important option for concurrent cardiac and renal dysfunction and has acceptable rejection and survival rates.
Assuntos
Rejeição de Enxerto , Sobrevivência de Enxerto , Transplante de Coração , Transplante de Rim , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Síndrome Cardiorrenal/cirurgia , Função Retardada do Enxerto , Estudos Retrospectivos , Falência Renal Crônica/cirurgia , Falência Renal Crônica/complicações , Insuficiência Cardíaca/cirurgia , Insuficiência Cardíaca/mortalidade , Resultado do TratamentoRESUMO
BACKGROUND: Brazil is a middle-income country that aims to provide universal health coverage, but its surgical system's efficiency has rarely been analyzed. In an effort to strengthen surgical national systems, the Lancet Commission on Global Surgery proposed bellwether procedures as quality indicators of surgical workforces. This study aims to evaluate regional inequalities in access to bellwether procedures and their associated mortality across the five Brazilian geographical regions. METHODS: Using DATASUS, Brazil's national healthcare database, data were collected on the total amount of performed bellwether procedures-cesarean section, laparotomy, and open fracture management-and their associated mortality, by geographical region. We evaluated the years 2018-2020, both in emergent and elective conditions. Statistical analysis was performed by one-way ANOVA test and Tukey's multiple comparisons test. RESULTS: During this period, DATASUS registered 2,687,179 cesarean sections, 1,036,841 laparotomies, and 648,961 open fracture treatments. The access and associated mortality related to these procedures were homogeneous between the regions in elective care. There were significant geographical inequalities in access and associated mortality in emergency care (p < 0.05, 95% CI) for all bellwether procedures. The Southeast, the most economically developed region of the country, was the region with the lowest amount of bellwether procedures per 100,000 inhabitants. CONCLUSION: Brazil's public surgical system is competent at promoting elective surgical care, but more effort is needed to fortify emergency care services. Public policies should encourage equity in the geographic allocation of the surgical workforce.
Assuntos
Fraturas Expostas , Humanos , Feminino , Gravidez , Fraturas Expostas/cirurgia , Acessibilidade aos Serviços de Saúde , Brasil , Cesárea , LaparotomiaRESUMO
Silver nanoparticles (AgNP) are among the most widely commercialized nanomaterials globally, with applications in medicine and the food industry. Consequently, the increased use of AgNP in the food industry has led to an unavoidable rise in human exposure to these nanoparticles. Their widespread use raises concerns about potential hazards to human health, specifically their intestinal pro-inflammatory effects. Thus, the main objective of this study was to evaluate the biological effects of two subacute doses of 5 nm polyvinylpyrrolidone (PVP)-AgNP in C57BL/6J mice. One mg/kg body weight or 10 mg/kg bw was provided once a day for 14 days, using a new technology (HaPILLness) that allows voluntary, stress-free, and accurate oral dosing. It was observed that after oral ingestion, while AgNP is biodistributed throughout the entire organism, most of the ingested dose is excreted in the feces. The passage and accumulation of AgNP throughout the intestine instigated a prominent inflammatory response, marked by significant histological, vascular, and cellular transformations. This response was driven by the activation of the nuclear factor-кB (NF-кB) inflammatory pathway, ultimately leading to the generation of multiple cytokines and chemokines.
Assuntos
Nanopartículas Metálicas , Camundongos , Humanos , Animais , Camundongos Endogâmicos C57BL , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Distribuição Tecidual , IntestinosRESUMO
For the first time, the present study unravels a cardiospecific therapeutic approach for Pulmonary Arterial Hypertension (PAH), a disease with a very poor prognosis and high mortality rates due to right ventricle (RV) dysfunction. We first established a new in vitro model of high-pressure-induced hypertrophy that closely resembles heart defects associated with PAH and validated our in vitro findings on a preclinical in vivo model of monocrotaline (MCT)-induced PAH. Our results showed the in vitro antihypertrophic effect of 1,8-cineole, a monoterpene widely found in several essential oils. Also, a decrease in RV hypertrophy and fibrosis, and an improvement in heart function in vivo was observed, when 1,8-cineole was applied topically. Furthermore, 1,8-cineole restored gap junction protein connexin43 distribution at the intercalated disks and mitochondrial functionality, suggesting it may act by preserving cardiac cell-to-cell communication and bioenergetics. Overall, our results point out a promising therapeutic compound that can be easily applied topically, thus paving the way for the development of effective cardiac-specific therapies to greatly improve PAH outcomes.
Assuntos
Cardiomiopatias , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Conexina 43 , Modelos Animais de Doenças , Eucaliptol/uso terapêutico , Ventrículos do Coração/metabolismo , Homeostase , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Disfunção Ventricular Direita/metabolismoAssuntos
Hipertensão Arterial Pulmonar , Humanos , Eucaliptol , Ventrículos do Coração , Conexina 43 , HomeostaseRESUMO
Convincing evidence indicates that advanced glycation end-products and danger-associated protein S100B play a role in Parkinson's disease (PD). These agents operate through the receptor for advanced glycation end-products (RAGE), which displays distinct isoforms playing protective/deleterious effects. However, the nature of RAGE variants has been overlooked in PD studies. Hence, we attempted to characterize RAGE regulation in early stages of PD striatal pathology. A neurotoxin-based rodent model of PD was used in this study, through administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to C57BL/6 mice. Animals were killed 6 h post-MPTP to assess S100B/RAGE contents (RT-qPCR, ELISA) and RAGE isoform density (WB) and cellular distribution (immunohistochemistry). Dopaminergic and gliotic status were also mapped (HPLC-ED, WB, immunohistochemistry). At this preliminary stage of MPTP-induced PD in mice, RAGE inhibitory isoforms were increased whereas full-length RAGE was not affected. This putative cytoprotective RAGE phenotype paired an inflammatory and pro-oxidant setting fueling DAergic denervation. Increased RAGE inhibitory variants occur in astrocytes showing higher S100B density but no overt signs of hypertrophy or NF-κB activation, a canonical effector of RAGE. These findings expand our understanding of the toxic effect of MPTP on striatum and offer first in vivo evidence of RAGE being a responder in early stages of astrogliosis dynamics, supporting a protective rather tissue-destructive phenotype of RAGE in the initial phase of PD degeneration. These data lay the groundwork for future studies on the relevance of astrocytic RAGE in DAergic neuroprotection strategies. We report increased antagonistic RAGE variants paralleling S100B up-regulation in early stages of MPTP-induced astrogliosis dynamics . We propose that selective RAGE regulation reflects a self-protective mechanism to maintain low levels of RAGE ligands , preventing long-term inflammation and oxidative stress arising from sustained ligands/flRAGE activation . Understanding loss of RAGE protective response to stress may provide new therapeutic options to halt or slow down dopaminergic axonopathy and, ultimately, neuronal death .
Assuntos
Astrócitos/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Doença de Parkinson/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genéticaRESUMO
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Assuntos
Mitocôndrias , Polifenóis , Humanos , Polifenóis/farmacologia , Mitocôndrias/metabolismo , Sistema Imunitário/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismoRESUMO
Biological therapies have transformed high-burden treatments. As the patent and exclusivity period for biological medicines draws to a close, there is a possibility for the development and authorization of biosimilars. These products boast comparable levels of safety, quality, and effectiveness to their precursor reference products. Biosimilars, although similar to reference products, are not identical copies and should not be considered generic substitutes for the original. Their development and evaluation involve a rigorous step-by-step process that includes analytical, functional, and nonclinical evaluations and clinical trials. Clinical studies conducted for biosimilars aim to establish similar efficacy, safety, and immunogenicity, rather than demonstrating a clinical benefit, as with the reference product. However, although the current knowledge regarding biosimilars has significantly increased, several controversies and misconceptions still exist regarding their immunogenicity, extrapolation, interchangeability, substitution, and nomenclature. The development of biosimilars stimulates market competition, contributes toward healthcare sustainability, and allows for greater patient access. However, maximizing the benefits of biosimilars requires cooperation between regulators and developers to ensure that patients can benefit quickly from access to these new therapeutic alternatives while maintaining high standards of quality, safety, and efficacy. Recognizing the inherent complexities of comprehending biosimilars fully, it is essential to focus on realistic approaches, such as fostering open communication between healthcare providers and patients, encouraging informed decision-making, and minimizing risks. This review addresses the regulatory and manufacturing requirements for biosimilars and provides clinicians with relevant insights for informed prescribing.
RESUMO
The influence of gut microbiota in the onset and development of several metabolic diseases has gained attention over the last few years. Diet plays an essential role in gut microbiota modulation. Western diet (WD), characterized by high-sugar and high-fat consumption, alters gut microbiome composition, diversity index, microbial relative levels, and functional pathways. Despite the promising health effects demonstrated by polyunsaturated fatty acids, their impact on gut microbiota is still overlooked. The effect of Fish oil (omega-3 source) and Pomegranate oil (punicic acid source), and a mixture of both oils in gut microbiota modulation were determined by subjecting the oil samples to in vitro fecal fermentations. Cecal samples from rats from two different dietary groups: a control diet (CD) and a high-fat high-sugar diet (WD), were used as fecal inoculum. 16S amplicon metagenomics sequencing showed that Fish oil + Pomegranate oil from the WD group increased α-diversity. This sample can also increase the relative abundance of the Firmicutes and Bacteroidetes phylum as well as Akkermansia and Blautia, which were affected by the WD consumption. All samples were able to increase butyrate and acetate concentration in the WD group. Moreover, tyrosine concentrations, a precursor for dopamine and norepinephrine, increase in the Fish oil + Pomegranate oil WD sample. GABA, an important neurotransmitter, was also increased in WD samples. These results suggest a potential positive impact of these oils' mixture on gut-brain axis modulation. It was demonstrated, for the first time, the great potential of using a mixture of both Fish and Pomegranate oil to restore the gut microbiota changes associated with WD consumption.
Assuntos
Bactérias , Dieta Ocidental , Ácidos Graxos Ômega-3 , Fezes , Fermentação , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Fezes/microbiologia , Ratos , Masculino , Dieta Ocidental/efeitos adversos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Linolênicos/farmacologia , Ratos Wistar , Óleos de Peixe/farmacologia , Punica granatum/química , Óleos de Plantas/farmacologia , Ceco/microbiologia , Ceco/metabolismoRESUMO
Adipose tissue dysfunction is more related to insulin resistance than body mass index itself and an alteration in adipose tissue function is thought to underlie the shift from metabolically healthy to unhealthy obesity. Herein, we performed a clustering analysis that revealed distinct visceral adipose tissue gene expression patterns in patients with obesity at distinct stages of metabolic dysregulation. We have built a cross-sectional cohort that aims at reflecting the evolution of the metabolic sequelae of obesity with the main objective to map the sequential events that play a role in adipose tissue dysfunction from the metabolically healthy (insulin-sensitive) state to several incremental degrees of metabolic dysregulation, encompassing insulin resistance establishment, pre-diabetes, and type 2 diabetes. We found that insulin resistance is mainly marked by the downregulation of adipose tissue vasculature remodeling-associated gene expression, suggesting that processes like angiogenesis and adaptative expansion/retraction ability suffer early dysregulation. Prediabetes was characterized by compensatory growth factor-dependent signaling and increased response to hypoxia, while type 2 diabetes was associated with loss of cellular response to insulin and hypoxia and concomitant upregulation of inflammatory markers. Our findings suggest a putative sequence of dysregulation of biological processes that is not linear and has multiple distinct phases across the metabolic dysregulation process, ultimately culminating in the climax of adipose tissue dysfunction in type 2 diabetes. Several studies have addressed the transcriptomic changes in adipose tissue of patients with obesity. However, to the best of our knowledge, this is the first study unraveling the potential molecular mechanisms associated with the multi-step evolution of adipose tissue dysfunction along the metabolic sequelae of obesity.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Estudos Transversais , Resistência à Insulina/genética , Gordura Intra-Abdominal , Insulina , Progressão da Doença , Hipóxia , Obesidade/genéticaRESUMO
Vaccine adjuvants are important for enhancing vaccine efficacy, and although aluminium salts (Alum) are the most used, their limited ability to induce specific immune responses has spurred the search for new adjuvants. However, many adjuvants fail during product development due to manufacturability, supply, stability, or safety concerns. This work hypothesizes that protein-free yeast glucans can be used as vaccine adjuvants due to their known immunostimulatory activity and high abundancy. Thus, high molecular weight glucans with over 99% purity, comprising 64-70% ß-glucans and 29-35% α-glucans, were extracted from a wild-type yeast and an engineered yeast to produce a steviol glycoside. These glucans underwent carboxymethylation to enhance solubility. Both water-dispersible and particulate glucans were evaluated as adjuvants, either alone or in combination with Alum or squalene stable emulsion (SE), for a SARS-CoV-2 vaccine. The study demonstrated that glucans triggered a robust immune response and enhanced the effects of Alum and SE when used in combination, both in vitro and in vivo. Water-dispersible glucans combined with Alum, and particulate glucans combined with SE, increased the production of specific antibodies against SARS-CoV-2 spike protein and enhanced serum neutralization titers against SARS-CoV-2 pseudovirus. Furthermore, the results indicated that larger molecular weight glucans from engineered yeast exhibited stronger immunogenic activity in comparison to wild-type yeast glucans. In conclusion, appropriately formulated glucans have the potential to be scalable, low-cost vaccine adjuvants, potentially overcoming the limitations of current adjuvants.
RESUMO
OBJECTIVE: Obesity is linked to perturbations in energy balance mechanisms, including ghrelin and leptin actions at the hypothalamic circuitry of neuropeptide Y (NPY) and melanocortin. However, information about the regulation of this system in the periphery is still scarce. Our objective was to study the regulation of the NPY/melanocortin system in the adipose tissue (AT) and evaluate its therapeutic potential for obesity and type 2 diabetes. METHODS: The expression of the NPY/melanocortin receptors' levels was assessed in the visceral AT of individuals with obesity and altered metabolism. Protein levels of these receptors were evaluated in cultured adipocytes incubated with ghrelin (30 and 100 ng/mL) and leptin (1 and 10 nM) and in the AT of an animal model with a mutation in the leptin receptor (ZSF1 rat), to understand their regulation by leptin and ghrelin. The vertical sleeve gastrectomy animal model was used to evaluate the putative therapeutic potential of the NPY/melanocortin system. RESULTS: In this study, we unravelled that leptin (1 nM and 10 nM) selectively reduced the levels of NPY5R and MC3R but no other NPYR/MCRs in cultured adipocytes. In turn, acylated ghrelin (100 ng/mL) significantly increased NPY1R, but the inhibition of its receptor also abrogates MC3R levels. However, in the Lepr-deficient ZSF1 rat, both NPY5R and MC3R levels were reduced, along with other NPYRs and MCRs, suggesting that leptin resistance negatively affects NPY and melanocortin signalling. In human adipose tissue, we found a downregulation of genes encoding the NPY and melanocortin receptors in the visceral AT of individuals with obesity and insulin resistance, being correlated with genes regulating metabolic activity. Additionally, diabetic obese rats submitted to vertical sleeve gastrectomy showed increased levels of NPY, melanocortin, ghrelin, and leptin receptors in the AT, including MC3R, suggesting it may constitute a therapeutic target in obesity. CONCLUSIONS: Our results suggest that the AT NPY/melanocortin system, particularly the MC3R, may be involved in the neuroendocrine regulation of adipocyte metabolism. Altogether, our work shows MC3R is under the control of the ghrelin/leptin duo, is reduced in patients with obesity and prediabetes, and may constitute a therapeutic target in obesity.
Assuntos
Adipócitos , Tecido Adiposo , Grelina , Leptina , Obesidade , Receptor Tipo 3 de Melanocortina , Animais , Leptina/metabolismo , Obesidade/metabolismo , Humanos , Grelina/metabolismo , Grelina/farmacologia , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 3 de Melanocortina/genética , Masculino , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Ratos , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Feminino , Adulto , Pessoa de Meia-Idade , Receptores para Leptina/metabolismo , Receptores para Leptina/genéticaRESUMO
The 35th Brazilian Congress of Surgery marked a turning point for surgical education in the country. For the first time, the Brazilian College of Surgeons included Global Surgery on the main congressional agenda, providing a unique opportunity to rethink how surgical skills are taught from a public health perspective. This discussion prompts us to consider why and how Global Surgery education should be expanded in Brazil. Although Brazilian researchers and institutions have contributed to the fields expansion since 2015, Global Surgery education initiatives are still incipient in our country. Relying on successful strategies can be a starting point to promote the area among national surgical practitioners. In this editorial, we discuss potential strategies to expand Global Surgery education opportunities and propose a series of recommendations at the national level.
Assuntos
Cirurgiões , Humanos , Brasil , Universidades , Saúde PúblicaRESUMO
Blueberries, red fruits enriched in polyphenols and fibers, are envisaged as a promising nutraceutical intervention in a plethora of metabolic diseases. Prediabetes, an intermediate state between normal glucose tolerance and type 2 diabetes, fuels the development of complications, including hepatic steatosis. In previous work, we have demonstrated that blueberry juice (BJ) supplementation benefits glycemic control and lipid profile, which was accompanied by an amelioration of hepatic mitochondrial bioenergetics. The purpose of this study is to clarify the impact of long-term BJ nutraceutical intervention on cellular mechanisms that govern hepatic lipid homeostasis, namely autophagy and endoplasmic reticulum (ER) stress, in a rat model of prediabetes. Two groups of male Wistar rats, 8-weeks old, were fed a prediabetes-inducing high-fat diet (HFD) and one group was fed a control diet (CD). From the timepoint where the prediabetic phenotype was achieved (week 16) until the end of the study (week 24), one of the HFD-fed groups was daily orally supplemented with 25 g/kg body weight (BW) of BJ (HFD + BJ). BW, caloric intake, glucose tolerance and insulin sensitivity were monitored throughout the study. The serum and hepatic lipid contents were quantified. Liver and interscapular brown and epidydimal white adipose tissue depots (iBAT and eWAT) were collected for histological analysis and to assess thermogenesis, ER stress and autophagy markers. The gut microbiota composition and the short-chain fatty acids (SCFAs) content were determined in colon fecal samples. BJ supplementation positively impacted glycemic control but was unable to prevent obesity and adiposity. BJ-treated animals presented a reduction in fecal SCFAs, increased markers of arrested iBAT thermogenesis and energy expenditure, together with an aggravation of HFD-induced lipotoxicity and hepatic steatosis, which were accompanied by the inhibition of autophagy and ER stress responses in the liver. In conclusion, despite the improvement of glucose tolerance, BJ supplementation promoted a major impact on lipid management mechanisms at liver and AT levels in prediabetic animals, which might affect disease course.
Assuntos
Mirtilos Azuis (Planta) , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Estado Pré-Diabético , Ratos , Masculino , Animais , Camundongos , Estado Pré-Diabético/metabolismo , Diabetes Mellitus Tipo 2/complicações , Ratos Wistar , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Obesidade/metabolismo , Suplementos Nutricionais , Glucose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipídeos/farmacologia , Autofagia , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Diabetic cardiomyopathy (DCM) is defined as structural and functional changes in the myocardium due to metabolic and cellular abnormalities induced by diabetes mellitus (DM). The impact of prediabetic conditions on the cardiac tissue remains to be elucidated. The goal of this study was to elucidate whether cardiac dysfunction is already present in a state of prediabetes, in the presence of insulin resistance, and to unravel the underlying mechanisms, in a rat model without obesity and hypertension as confounding factors. METHODS: Two groups of 16-week-old Wistar rats were tested during a 9 week protocol: high sucrose (HSu) diet group (n = 7) - rats receiving 35% of sucrose in drinking water vs the vehicle control group (n = 7). The animal model was characterized in terms of body weight (BW) and the glycemic, insulinemic and lipidic profiles. The following parameters were assessed to evaluate possible early cardiac alterations and underlying mechanisms: blood pressure, heart rate, heart and left ventricle (LV) trophism indexes, as well as the serum and tissue protein and/or the mRNA expression of markers for fibrosis, hypertrophy, proliferation, apoptosis, angiogenesis, endothelial function, inflammation and oxidative stress. RESULTS: The HSu-treated rats presented normal fasting plasma glucose (FPG) but impaired glucose tolerance (IGT), accompanied by hyperinsulinemia and insulin resistance (P < 0.01), confirming this rat model as prediabetic. Furthermore, although hypertriglyceridemia (P < 0.05) was observed, obesity and hypertension were absent. Regarding the impact of the HSu diet on the cardiac tissue, our results indicated that 9 weeks of treatment might be associated with initial cardiac changes, as suggested by the increased LV weight/BW ratio (P < 0.01) and a remarkable brain natriuretic peptide (BNP) mRNA overexpression (P < 0.01), together with a marked trend for an upregulation of other important mediators of fibrosis, hypertrophy, angiogenesis and endothelial lesions, as well as oxidative stress. The inflammatory and apoptotic markers measured were unchanged. CONCLUSIONS: This animal model of prediabetes/insulin resistance could be an important tool to evaluate the early cardiac impact of dysmetabolism (hyperinsulinemia and impaired glucose tolerance with fasting normoglycemia), without confounding factors such as obesity and hypertension. Left ventricle hypertrophy is already present and brain natriuretic peptide seems to be the best early marker for this condition.
Assuntos
Glicemia/metabolismo , Modelos Animais de Doenças , Hipertrofia Ventricular Esquerda/metabolismo , Resistência à Insulina/fisiologia , Peptídeo Natriurético Encefálico/biossíntese , Estado Pré-Diabético/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Diagnóstico Precoce , Regulação da Expressão Gênica , Hipertrofia Ventricular Esquerda/sangue , Hipertrofia Ventricular Esquerda/diagnóstico , Masculino , Peptídeo Natriurético Encefálico/sangue , Estado Pré-Diabético/sangue , Estado Pré-Diabético/diagnóstico , Ratos , Ratos WistarRESUMO
Recently, compelling evidence points to dysbiosis and disruption of the epithelial intestinal barrier as major players in the pathophysiology of metabolic disorders, such as obesity. Upon the intestinal barrier disruption, components from bacterial metabolism and bacteria itself can reach peripheral tissues through circulation. This has been associated with the low-grade inflammation that characterizes obesity and other metabolic diseases. While circulating bacterial DNA has been postulated as a common feature of obesity and even type 2 diabetes, almost no focus has been given to the existence and effects of bacteria in peripheral tissues, namely the adipose tissue. As a symbiont population, it is expected that gut microbiota modulate the immunometabolism of the host, thus influencing energy balance mechanisms and inflammation. Gut inflammatory signals cause direct deleterious inflammatory responses in adipose tissue and may also affect key gut neuroendocrine mechanisms governing nutrient sensing and energy balance, like incretins and ghrelin, which play a role in the gut-brain-adipose tissue axis. Thus, it is of major importance to disclose how gut microbiota and derived signals modulate neuroendocrine and inflammatory pathways, which contribute to the dysfunction of adipose tissue and to the metabolic sequelae of obesity and related disorders. This review summarizes the current knowledge regarding these topics and identifies new perspectives in this field of research, highlighting new pathways toward the reduction of the inflammatory burden of metabolic diseases.
Assuntos
Diabetes Mellitus Tipo 2 , Endotoxemia , Doenças Metabólicas , Humanos , Endotoxemia/complicações , Endotoxemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Disbiose/complicações , Disbiose/metabolismo , Disbiose/microbiologia , Inflamação , Doenças Metabólicas/metabolismo , Obesidade/complicações , Tecido AdiposoRESUMO
Lipid droplets (LDs) are specialized organelles that mediate lipid storage and play a very important role in suppressing lipotoxicity and preventing dysfunction caused by free fatty acids (FAs). The liver, given its critical role in the body's fat metabolism, is persistently threatened by the intracellular accumulation of LDs in the form of both microvesicular and macrovesicular hepatic steatosis. The histologic characterization of LDs is typically based on lipid-soluble diazo dyes, such as Oil Red O (ORO) staining, but a number of disadvantages consistently hamper the use of this analysis with liver specimens. More recently, lipophilic fluorophores 493/503 have become popular for visualizing and locating LDs due to their rapid uptake and accumulation into the neutral lipid droplet core. Even though most applications are well-described in cell cultures, there is less evidence demonstrating the reliable use of lipophilic fluorophore probes as an LD imaging tool in tissue samples. Herein, we propose an optimized boron dipyrromethene (BODIPY) 493/503-based protocol for the evaluation of LDs in liver specimens from an animal model of high-fat diet (HFD)-induced hepatic steatosis. This protocol covers liver sample preparation, tissue sectioning, BODIPY 493/503 staining, image acquisition, and data analysis. We demonstrate an increased number, intensity, area ratio, and diameter of hepatic LDs upon HFD feeding. Using orthogonal projections and 3D reconstructions, it was possible to observe the full content of neutral lipids in the LD core, which appeared as nearly spherical droplets. Moreover, with the fluorophore BODIPY 493/503, we were able to distinguish microvesicles (1 µm < d ≤ 3 µm), intermediate vesicles (3 µm < d ≤ 9 µm), and macrovesicles (d > 9 µm), allowing the successful discrimination of microvesicular and macrovesicular steatosis. Overall, this BODIPY 493/503 fluorescence-based protocol is a reliable and simple tool for hepatic LD characterization and may represent a complementary approach to the classical histological protocols.
Assuntos
Fígado Gorduroso , Gotículas Lipídicas , Animais , Gotículas Lipídicas/metabolismo , Imageamento Tridimensional , Fígado Gorduroso/diagnóstico por imagem , Fígado Gorduroso/metabolismo , Corantes/metabolismo , Lipídeos , Metabolismo dos LipídeosRESUMO
The inflammatory pathway driven by TNF-α, through its receptors TNFR1 and TNFR2, is a common feature in the pathogenesis of chronic kidney disease (CKD), regardless of the initial disease cause. Evidence correlates the chronic inflammatory status with decreased renal function. Our aim was to evaluate the potential of TNF receptors as biomarkers for CKD diagnosis and staging, as well as their association with the progression of renal lesions, in rat models of early and moderate CKD. We analyzed the circulating levels of inflammatory molecules-tumor necrosis factor-alpha (TNF-α), tumor necrosis factor receptor 1 (TNFR1) and 2 (TNFR2) and tissue inhibitor of metalloproteinase-1 (TIMP-1)-and studied their associations with TNFR1 and TNFR2 renal expression, glomerular and tubulointerstitial lesions, and with biomarkers of renal (dys)function. An increase in all inflammatory markers was observed in moderate CKD, as compared to controls, but only circulating levels of both TNFR1 and TNFR2 were significantly increased in the early disease; TNFR2 serum levels were negatively correlated with eGFR. However, only TNFR2 renal expression increased with CKD severity and showed correlations with the score of mild and advanced tubular lesions. Our findings suggest that renal TNFR2 plays a role in CKD development, and has potential to be used as a biomarker for the early detection and progression of the disease. Still, the potential value of this biomarker in disease progression warrants further investigation.
Assuntos
Receptores Tipo II do Fator de Necrose Tumoral , Insuficiência Renal Crônica , Ratos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Inibidor Tecidual de Metaloproteinase-1 , Biomarcadores , Insuficiência Renal Crônica/diagnósticoRESUMO
OBJECTIVE: DATASUS is the Brazilian Public Unified Health System (SUS) department responsible for providing health data that are used as a primary source of data in several studies on surgery and surgical specialties although its main limitations have not been previously reviewed. The objective of this work is to synthesize information from studies on surgery that used DATASUS systems as a data source and to identify the main gaps in this platform. METHODS: a scoping review was conducted according to the PRISMA-ScR method to identify papers on surgery, and other surgical specialties, that used the DATASUS platform as a primary data source. No restrictions were imposed regarding the type of study or year of publication. Grounded Theory was used to analyze the content of the articles. RESULTS: 248 works were initially analyzed and 47 were included in the final analysis of this study. The original articles included were published between 2009 and 2022 and the majority (12.76%, n=6) were published in the Journal of the Brazilian College of Surgeons. Retrospective studies (40.43%, n=19) were the most common type of study found. Content analysis of the articles identified four predominant domains in the scientific literature about the limitations of using DATASUS in surgical research: lack of data, reliability, precision and data integration. CONCLUSION: the information systems available in DATASUS are the largest source of information about the SUS, but the scientific literature on the quality of data available in these systems remains scarce and studies aimed at measuring this metric are necessary.
Assuntos
Saúde Pública , Humanos , Brasil , Bases de Dados Factuais , Reprodutibilidade dos Testes , Estudos RetrospectivosRESUMO
BACKGROUND: Cuprizone (CPZ) is a copper chelator used to produce a reversible oligodendrocytopathy in animals, which has some similarities to the pathology found in human multiple sclerosis (MS). This model is attractive to study remyelination. AIMS: To demonstrate that a two-week period after cessation of CPZ exposure is sufficient to establish changes compatible with remyelination, without accompanying behavior or brain magnetic resonance imaging (MRI) disturbances. METHODS: Two groups of male C57BL/6 mice were fed an oral solution of CPZ (0.2%) for 5 weeks (W5); half of the animals were kept under the vehicle for another 2 weeks (W7). After 5 and 7 weeks, animals were subjected to a battery of behavioural tests and 18 animals to brain MRI. Animals' cerebellar samples were studied for gene expression and/or protein levels of GFAP, myelin proteolipid protein (PLP), TNF-α and IL-1ß. RESULTS: No differences were observed between CPZ-exposed and control animals, regarding behavior and MRI, both at W5 and W7. However, myelin PLP levels decreased in CPZ (W5) treated animals, and these changes reverted at W7. GFAP levels varied in the opposite direction. CONCLUSIONS: Observed changes validate the use of W5 and W7 temporal moments for the study of demyelination and early remyelination in this model.